Metal-organic frameworks for applications in remediation of oxyanion/cation-contaminated water

被引:130
|
作者
Howarth, Ashlee J. [1 ]
Liu, Yangyang [1 ]
Hupp, Joseph T. [1 ]
Farha, Omar K. [1 ,2 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia
来源
CRYSTENGCOMM | 2015年 / 17卷 / 38期
关键词
ZEOLITIC IMIDAZOLATE FRAMEWORKS; ULTRAHIGH SURFACE-AREA; SELECTIVE EXTRACTION; LUMINESCENT PROBE; HIGHLY EFFICIENT; WASTE-WATER; REMOVAL; ADSORPTION; SELENIUM; MOFS;
D O I
10.1039/c5ce01428j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water pollution is an issue that should be carefully monitored and addressed. A major source of water pollution originates from high temperature industrial processes such as fossil fuel combustion and solid waste incineration. This waste typically contains high levels of oxyanion/cation forming elements which are particularly hazardous due to their inherent solubility in water and their resulting bioavailability. One approach for oxyanion/cation removal from water involves using an adsorbing medium to soak up and remove pollutants. Metal-organic frameworks (MOFs) offer an interesting platform for water remediation. MOFs are structurally diverse, porous materials that are constructed from metal nodes bridged by organic ligands. This highlight will focus on oxyanion/cation (PO43-, AsO43-, SeO32-, SeO42-, UO22+) removal from aqueous solutions using MOFs as contaminant-selective sponges. The mechanism of adsorption in different frameworks will be explored to gain insight into some design features that are important for MOFs to be used in applications to help alleviate water pollution.
引用
收藏
页码:7245 / 7253
页数:9
相关论文
共 50 条
  • [21] Green applications of metal-organic frameworks
    Ajoyan, Zvart
    Marino, Paola
    Howarth, Ashlee J.
    CRYSTENGCOMM, 2018, 20 (39) : 5899 - 5912
  • [22] Industrial applications of metal-organic frameworks
    Czaja, Alexander U.
    Trukhan, Natalia
    Mueller, Ulrich
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1284 - 1293
  • [23] Metal-organic frameworks for electrochemical applications
    Liu, Wei
    Yin, Xue-Bo
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2016, 75 : 86 - 96
  • [24] Metal-Organic Frameworks for Energy Applications
    Wang, Hailong
    Zhu, Qi-Long
    Zou, Ruqiang
    Xu, Qiang
    CHEM, 2017, 2 (01): : 52 - 80
  • [25] Metal-Organic Frameworks for Biomedical Applications
    Yang, Jie
    Yang, Ying-Wei
    SMALL, 2020, 16 (10)
  • [26] Metal-organic frameworks for photocatalysis applications
    Li, Shenshen
    Chen, Yu-Sheng
    Mulfort, Karen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [27] Metal-organic frameworks for energy applications
    Hu, Yun Hang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [28] Potential applications of metal-organic frameworks
    Kuppler, Ryan J.
    Timmons, Daren J.
    Fang, Qian-Rong
    Li, Jian-Rong
    Makal, Trevor A.
    Young, Mark D.
    Yuan, Daqiang
    Zhao, Dan
    Zhuang, Wenjuan
    Zhou, Hong-Cai
    COORDINATION CHEMISTRY REVIEWS, 2009, 253 (23-24) : 3042 - 3066
  • [29] Metal-Organic Frameworks: Synthesis and Applications
    Champness, Neil R.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2012, 68 : S9 - S9
  • [30] Emerging applications of metal-organic frameworks
    Ricco, Raffaele
    Pfeiffer, Constance
    Sumida, Kenji
    Sumby, Christopher J.
    Falcaro, Paolo
    Furukawa, Shuhei
    Champness, Neil R.
    Doonan, Christian J.
    CRYSTENGCOMM, 2016, 18 (35): : 6532 - 6542