Determination of residual stress and strain-hardening exponent using artificial neural networks

被引:0
|
作者
Guan, Chunping [1 ]
Jin, Hongping [2 ]
机构
[1] Guangdong Ind Tech Coll, Guangzhou, Guangdong, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan, Peoples R China
来源
关键词
residual stress; strain-hardening exponent; spherical indentation; artificial neural networks; MECHANICAL-PROPERTIES; INDENTATION; LOAD;
D O I
10.4028/www.scientific.net/AMR.472-475.332
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Through dimensional analysis of indentation parameters in this study, we propose an artificial neural network (ANN) model to extract the residual stress and strain-hardening exponent based on spherical indentation. The relationships between indentation parameters and the residual stress and material properties are numerically calibrated through training and validation of the ANN model. They enable the direct mapping of the characteristics of the indentation parameters to the residual stress and the elastic-plastic material properties. The proposed ANN model can be used to quickly and effectively determine the residual stress and strain-hardening exponent.
引用
收藏
页码:332 / +
页数:2
相关论文
共 50 条
  • [21] VARIATION OF THE CYCLIC STRAIN-HARDENING EXPONENT IN ADVANCED ALUMINUM-ALLOYS
    BERKOVITS, A
    INTERNATIONAL JOURNAL OF FATIGUE, 1987, 9 (04) : 229 - 232
  • [22] Theoretical calculation of the strain-hardening exponent and the strength coefficient of metallic materials
    Zhongping Zhang
    Wenzhen Zhao
    Qiang Sun
    Chunwang Li
    Journal of Materials Engineering and Performance, 2006, 15 : 19 - 22
  • [23] EFFECT OF STRAIN-HARDENING EXPONENT AND STRAIN CONCENTRATIONS ON BURSTING BEHAVIOR OF PRESSURE-VESSELS
    ROYER, CP
    ROLFE, ST
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1974, 96 (04): : 292 - 298
  • [24] Determination of Anisotropy and the Strain Hardening Exponent.
    Bauerfeind, Erhard
    Materialpruefung/Materials Testing, 1975, 17 (05): : 143 - 145
  • [25] Determination of stress-strain state and strength of structural elements on the basis of strain-hardening analysis
    Bastun V.N.
    Kaminskii A.A.
    Strength of Materials, 2005, 37 (2) : 131 - 145
  • [26] RESIDUAL STRESS PREDICTION IN POROUS CFRP USING ARTIFICIAL NEURAL NETWORKS
    Gomes, Guilherme Ferreira
    Ancelotti, Antonio Carlos, Jr.
    da Cunha, Sebastiao Simoes, Jr.
    COMPOSITES-MECHANICS COMPUTATIONS APPLICATIONS, 2018, 9 (01): : 27 - 40
  • [27] POLYAXIAL STRESS-STRAIN RELATIONS OF A STRAIN-HARDENING METAL
    BATDORF, SB
    BUDIANSKY, B
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1954, 21 (04): : 323 - 326
  • [28] STRESS-STRAIN MODELING OF SANDS USING ARTIFICIAL NEURAL NETWORKS
    ELLIS, GW
    YAO, C
    ZHAO, R
    PENUMADU, D
    JOURNAL OF GEOTECHNICAL ENGINEERING-ASCE, 1995, 121 (05): : 429 - 435
  • [29] Characterization of double strain-hardening behavior using a new flow of extremum curvature strain of Voce strain-hardening model
    JongBok Byun
    ChangWoon Jee
    IlDong Seo
    ManSoo Joun
    Journal of Mechanical Science and Technology, 2022, 36 : 4115 - 4126
  • [30] Characterization of double strain-hardening behavior using a new flow of extremum curvature strain of Voce strain-hardening model
    Byun, Jong Bok
    Jee, ChangWoon
    Seo, IlDong
    Joun, ManSoo
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (08) : 4115 - 4126