Long-wave-infrared near-field microscopy

被引:0
|
作者
Keilmann, F [1 ]
Knoll, B [1 ]
Kramer, A [1 ]
机构
[1] Max Planck Inst Biochem, D-82152 Martinsried, Germany
来源
PHYSICA STATUS SOLIDI B-BASIC RESEARCH | 1999年 / 215卷 / 01期
关键词
D O I
10.1002/(SICI)1521-3951(199909)215:1<849::AID-PSSB849>3.0.CO;2-L
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have extended scanning near-field optical microscopy to work at long wavelengths with sub-Gun resolution. This allows to exploit the rich spectroscopic signatures of vibrations and other low-energy excitations for nano-scale imaging. The experiment uses an "apertureless" metal probe tip which at the same time serves as force and tunneling probe tip to acquire the surface topography. The applied microwave or infrared wave generates an enhanced longitudinal field at the tip apex. The tip scattering is recorded with a resolution of about 100 nm, a limit given by the tip diameter. Surface-enhanced infrared absorption contrast is observed as predicted by a model which treats the combined scattering of the tip dipole together with its mirror dipole in the sample.
引用
下载
收藏
页码:849 / 854
页数:6
相关论文
共 50 条
  • [21] Etched chalcogenide fibers for near-field infrared scanning microscopy
    Unger, MA
    Kossakovski, DA
    Kongovi, R
    Beauchamp, JL
    Baldeschwieler, JD
    Palanker, DV
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (08): : 2988 - 2993
  • [22] Scanning microscopy by mid-infrared near-field scattering
    Knoll, B
    Keilmann, F
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (05): : 477 - 481
  • [23] On contrast parameters and topographic artifacts in near-field infrared microscopy
    Palanker, DV
    Simanovskii, DM
    Huie, P
    Smith, TI
    JOURNAL OF APPLIED PHYSICS, 2000, 88 (11) : 6808 - 6814
  • [24] Tip-scattering near-field microscopy in the infrared.
    Keilmann, F
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U255 - U255
  • [25] Nanoscale depth resolution in scanning near-field infrared microscopy
    wollny, Goetz
    Bruendermann, Erik
    Arsov, Zoran
    Quaroni, Luca
    Havenith, Martina
    OPTICS EXPRESS, 2008, 16 (10) : 7453 - 7459
  • [26] Scanning microscopy by mid-infrared near-field scattering
    Knoll, B.
    Keilmann, F.
    Applied Physics A: Materials Science and Processing, 1998, 66 (05): : 477 - 481
  • [27] Plasma electron acceleration driven by a long-wave-infrared laser
    Zgadzaj, R.
    Welch, J.
    Cao, Y.
    Amorim, L. D.
    Cheng, A.
    Gaikwad, A.
    Iapozzutto, P.
    Kumar, P.
    Litvinenko, V. N.
    Petrushina, I.
    Samulyak, R.
    Vafaei-Najafabadi, N.
    Joshi, C.
    Zhang, C.
    Babzien, M.
    Fedurin, M.
    Kupfer, R.
    Kusche, K.
    Palmer, M. A.
    Pogorelsky, I. V.
    Polyanskiy, M. N.
    Swinson, C.
    Downer, M. C.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [28] Millimeter-wave scanning near-field anisotropy microscopy
    Nozokido, T
    Iibuchi, R
    Bae, J
    Mizuno, K
    Kudo, H
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (03):
  • [29] Dielectric Illuminators for Millimeter-Wave Near-Field Microscopy
    Derkach, V. N.
    Golovashchenko, R. V.
    Ostryzhnyi, Ye. M.
    2016 9TH INTERNATIONAL KHARKIV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES (MSMW), 2016,
  • [30] Evanescent-wave scattering in near-field optical microscopy
    Wannemacher, R
    Quinten, M
    Pack, A
    JOURNAL OF MICROSCOPY-OXFORD, 1999, 194 : 260 - 264