On the finite difference scheme for a non-linear evolution problem with a non-linear dynamic boundary condition

被引:0
|
作者
Hlomuka, J [1 ]
机构
[1] Nelson Mandela Metropolitan Univ, Dept Math & Appl Math, ZA-6031 Port Elizabeth, South Africa
关键词
difference scheme; non-linear; evolution problem; dynamic boundary condition;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We derive a 1-D explicit parabolic finite difference scheme for a non-linear evolution problem with a non-linear dynamic boundary condition. The derivation starts with the problem as an implicit evolution equation; hence an abstract Cauchy problem. The abstract Cauchy problem is associated with canonical operators of the implicit evolution equation, whose range is a product Hilbert space of two Sobolev spaces. A parabolic finite difference scheme for the implicit evolution equation (on the product Hilbert space), is derived. This scheme, together with the finite difference scheme for the boundary surface heat loss relation is used to obtain a scheme that calculates both the body temperature and the "corresponding" surface temperature in the heat loss through radiation problem.
引用
收藏
页码:149 / 154
页数:6
相关论文
共 50 条
  • [21] NON-LINEAR DIFFERENCE EQUATION
    BRAY, HE
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (04): : 379 - &
  • [22] Finite-Difference Solutions of a Non-linear Schrodinger
    Hosseini, F.
    Pouyafar, V.
    Sadough, S. A.
    [J]. PROCEEDINGS OF THE 11TH WSEAS INTERNATIONAL CONFERENCE ON MATHEMATICAL AND COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING (MACMESE '09), 2009, : 92 - +
  • [23] Enhanced finite element scheme for non-linear piezoelectricity
    Kaltenbacher, Manfred
    Kaltenbacher, Barbara
    Hegewald, Thomas
    Lerch, Reinhard
    [J]. 2007 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1-6, 2007, : 1697 - +
  • [24] THE DIFFERENCE METHOD FOR THE SOLUTION OF GOURSATS NON-LINEAR PROBLEM
    BUDAK, BM
    GORBUNOV, AD
    [J]. DOKLADY AKADEMII NAUK SSSR, 1957, 117 (04): : 559 - 562
  • [25] Finite-difference methods for solving a non-linear chemical oscillator problem
    Cinar, ZA
    Twizell, EH
    [J]. FINITE DIFFERENCE METHODS: THEORY AND APPLICATIONS, 1999, : 63 - 70
  • [26] AN IMPLICIT SCHEME FOR NON-LINEAR EVOLUTION-EQUATIONS
    QIN, MZ
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 48 (01) : 57 - 71
  • [27] SINGULAR NON-LINEAR BOUNDARY-VALUE PROBLEM
    MACKI, JW
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1978, 78 (02) : 375 - 383
  • [28] SOLUTION TO A DIFFUSION PROBLEM WITH NON-LINEAR BOUNDARY CONDITIONS
    KOCHINA, NN
    [J]. DOKLADY AKADEMII NAUK SSSR, 1967, 174 (02): : 305 - &
  • [29] SOLVABILITY OF A TYPE OF NON-LINEAR BOUNDARY VALUE PROBLEM
    ARZHANOV, GV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1961, 139 (02): : 267 - &
  • [30] ON UNIQUENESS OF SOLUTIONS OF NON-LINEAR BOUNDARY VALUE PROBLEM
    COFFMAN, CV
    [J]. JOURNAL OF MATHEMATICS AND MECHANICS, 1964, 13 (05): : 751 - &