Structural and Functional Characterization of the Kindlin-1 Pleckstrin Homology Domain

被引:24
|
作者
Yates, Luke A. [1 ]
Lumb, Craig N. [2 ]
Brahme, Nina N. [3 ,4 ]
Zalyte, Ruta [1 ]
Bird, Louise E. [1 ,5 ]
De Colibus, Luigi [1 ]
Owens, Raymond J. [1 ,5 ]
Calderwood, David A. [3 ,4 ]
Sansom, Mark S. P. [2 ]
Gilbert, Robert J. C. [1 ]
机构
[1] Univ Oxford, Wellcome Trust Ctr Human Genet, Div Struct Biol, Oxford OX3 7BN, England
[2] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
[3] Yale Univ, Sch Med, Dept Cell Biol, New Haven, CT 06520 USA
[4] Yale Univ, Sch Med, Dept Pharmacol, New Haven, CT 06520 USA
[5] Oxford Prot Prod Facil United Kingdom, Rutherford Appleton Lab, Didcot OX11 0FA, Oxon, England
基金
英国医学研究理事会; 英国惠康基金; 英国生物技术与生命科学研究理事会; 美国国家卫生研究院;
关键词
PROTEIN-KINASE-B; INTEGRIN ACTIVATION; CRYSTAL-STRUCTURE; FORCE-FIELD; PH DOMAIN; PHOSPHOINOSITIDE-BINDING; SPECIFICITY DETERMINANTS; RESOLUTION STRUCTURE; INOSITOL PHOSPHATES; LEUKOCYTE ADHESION;
D O I
10.1074/jbc.M112.422089
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inside-out activation of integrins is mediated via the binding of talin and kindlin to integrin beta-subunit cytoplasmic tails. The kindlin FERM domain is interrupted by a pleckstrin homology (PH) domain within its F2 subdomain. Here, we present data confirming the importance of the kindlin-1 PH domain for integrin activation and its x-ray crystal structure at a resolution of 2.1 angstrom revealing a C-terminal second alpha-helix integral to the domain but found only in the kindlin protein family. An isoform-specific salt bridge occludes the canonical phosphoinositide binding site, but molecular dynamics simulations display transient switching to an alternative open conformer. Molecular docking reveals that the opening of the pocket would enable potential ligands to bind within it. Although lipid overlay assays suggested the PH domain binds inositol monophosphates, surface plasmon resonance demonstrated weak affinities for inositol 3,4,5-triphosphate (Ins(3,4,5)P-3; K-D similar to 100 mu M) and no monophosphate binding. Removing the salt bridge by site-directed mutagenesis increases the PH domain affinity for Ins(3,4,5)P-3 as measured by surface plasmon resonance and enables it to bind PtdIns(3,5)P-2 on a dot-blot. Structural comparison with other PH domains suggests that the phosphate binding pocket in the kindlin-1 PH domain is more occluded than in kindlins-2 and -3 due to its salt bridge. In addition, the apparent affinity for Ins(3,4,5)P-3 is affected by the presence of PO4 ions in the buffer. We suggest the physiological ligand of the kindlin-1 PH domain is most likely not an inositol phosphate but another phosphorylated species.
引用
收藏
页码:43246 / 43261
页数:16
相关论文
共 50 条
  • [31] A PREDICTION OF THE SECONDARY STRUCTURE OF THE PLECKSTRIN HOMOLOGY DOMAIN
    JENNY, TF
    BENNER, SA
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1994, 20 (01) : 1 - 3
  • [32] Focal adhesions Kindlin-1 and Kindlin-2 affected by epigenetic modifying in hepatocarcinogenesis
    Yuan, Yang
    Dong, Xiaona
    Yin, Shengju
    Zhang, Guoliang
    Zhou, Haiyan
    Li, Guohui
    Tang, Yan
    Wei, Xiaofan
    Zhang, Hongquan
    CLINICAL AND TRANSLATIONAL MEDICINE, 2024, 14 (01):
  • [33] Role of Kindlin-1 in adhesion and tumor development in skin
    Rognoni, E.
    Widmaier, M.
    Ussar, S.
    Faessler, R.
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2010, 89 : 50 - 50
  • [34] A transforming mutation in the pleckstrin homology domain of AKT1 in cancer
    Carpten, John D.
    Faber, Andrew L.
    Horn, Candice
    Donoho, Gregory P.
    Briggs, Stephen L.
    Robbins, Christiane M.
    Hostetter, Galen
    Boguslawski, Sophie
    Moses, Tracy Y.
    Savage, Stephanie
    Uhlik, Mark
    Lin, Aimin
    Du, Jian
    Qian, Yue-Wei
    Zeckner, Douglas J.
    Tucker-Kellogg, Greg
    Touchman, Jeffrey
    Patel, Ketan
    Mousses, Spyro
    Bittner, Michael
    Schevitz, Richard
    Lai, Mei-Huei T.
    Blanchard, Kerry L.
    Thomas, James E.
    NATURE, 2007, 448 (7152) : 439 - U1
  • [35] SOLUTION STRUCTURE OF A PLECKSTRIN-HOMOLOGY DOMAIN
    YOON, HS
    HAJDUK, PJ
    PETROS, AM
    OLEJNICZAK, ET
    MEADOWS, RP
    FESIK, SW
    NATURE, 1994, 369 (6482) : 672 - 675
  • [36] Kindlin-1 regulates the mammary tumour cell secretome
    Byron, A.
    Ward, J.
    Patel, H.
    Li, J.
    Sarvi, S.
    Dodd, G. L.
    Muir, M.
    Sims, A. H.
    Brunton, V. G.
    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, 2018, 99 (06) : A27 - A27
  • [37] The Structure of the N-Terminus of Kindlin-1: A Domain Important for αIIbβ3 Integrin Activation
    Goult, Benjamin T.
    Bouaouina, Mohamed
    Harburger, David S.
    Bate, Neil
    Patel, Bipin
    Anthis, Nicholas J.
    Campbell, Iain D.
    Calderwood, David A.
    Barsukov, Igor L.
    Roberts, Gordon C.
    Critchley, David R.
    JOURNAL OF MOLECULAR BIOLOGY, 2009, 394 (05) : 944 - 956
  • [38] A transforming mutation in the pleckstrin homology domain of AKT1 in cancer
    John D. Carpten
    Andrew L. Faber
    Candice Horn
    Gregory P. Donoho
    Stephen L. Briggs
    Christiane M. Robbins
    Galen Hostetter
    Sophie Boguslawski
    Tracy Y. Moses
    Stephanie Savage
    Mark Uhlik
    Aimin Lin
    Jian Du
    Yue-Wei Qian
    Douglas J. Zeckner
    Greg Tucker-Kellogg
    Jeffrey Touchman
    Ketan Patel
    Spyro Mousses
    Michael Bittner
    Richard Schevitz
    Mei-Huei T. Lai
    Kerry L. Blanchard
    James E. Thomas
    Nature, 2007, 448 : 439 - 444
  • [39] Structural Basis for the Golgi Association by the Pleckstrin Homology Domain of the Ceramide Trafficking Protein (CERT)
    Sugiki, Toshihiko
    Takeuchi, Koh
    Yamaji, Toshiyuki
    Takano, Toshiaki
    Tokunaga, Yuji
    Kumagai, Keigo
    Hanada, Kentaro
    Takahashi, Hideo
    Shimada, Ichio
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (40) : 33706 - 33718
  • [40] Differential expression of Kindlin-1 and Kindlin-2 correlates with esophageal cancer progression and epidemiology
    Peng Wang
    Jun Zhan
    Jiagui Song
    Yunling Wang
    Weigang Fang
    Zhihua Liu
    Hongquan Zhang
    Science China Life Sciences, 2017, 60 : 1214 - 1222