Development of pilot WGS/multi-layer membrane for CO2 capture

被引:19
|
作者
Lee, See Hoon [2 ]
Kim, Jung Nam [1 ]
Eom, Won Hyun [1 ]
Ryi, Shin-Kun [3 ]
Park, Jong-Soo [3 ]
Baek, Ii Hyun [1 ]
机构
[1] Korea Inst Energy Res, High Efficiency & Clean Energy Res Div, Taejon 305343, South Korea
[2] Chonbuk Natl Univ, Dept Resources & Energy Engn, Taejon 305343, South Korea
[3] Korea Inst Energy Res, Energy Mat & Convergence Res Dept, Taejon 305343, South Korea
关键词
Water gas shift (WGS); Membrane; CO2; capture; Gasification; GAS; SIMULATION; HYDROGEN;
D O I
10.1016/j.cej.2012.07.013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
For pre-combustion CO2 capture processes, a 1 Nm(3)/h water gas shift (WGS)/multi-layer membrane system has been developed. Simulated syngas (H-2: 25-35, CO: 60-65, CO2: 5-15 vol.%) was used in these experiments. The 1 Nm(3)/h WGS/multi-layer membrane system consisted of mass flow controllers, water gas shift reactors, gas/steam separators, five layer Pd-Cu membrane module, back pressure regulator, gas chromatograph (GC) analyzers and nondispersive infrared (ND-IR) gas analyzers. The operation conditions of WGS/multi-layer membrane system were 200-400 degrees C, 10-20 bar and steam/carbon ratios in WGS were between 2.0 and 5.0. In the experiments of WGS/multi-layer membrane system, the average gas concentration before membrane module was H-2: 57-58, CO2: 42-43, CO: 0.2-0.3 vol.%. The CO2 concentration of retentate flow reached up to 80 vol.% and the H-2 concentration of permeate flow was over 99 vol.%. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:521 / 525
页数:5
相关论文
共 50 条
  • [31] Effects of water vapor on membrane CO2 capture
    Yang, Lin-Jun
    Sun, Ying
    Zhang, Lin
    Wang, Xia
    [J]. Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2019, 33 (04): : 972 - 979
  • [32] Advances of mixed matrix membrane for CO2 capture
    Shi, Fei
    Li, Yifan
    [J]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39 (06): : 2453 - 2462
  • [33] Highly permeable membrane materials for CO2 capture
    Fu, Qiang
    Halim, Andri
    Kim, Jinguk
    Scofield, Joel M. P.
    Gurr, Paul A.
    Kentish, Sandra E.
    Qiao, Greg G.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (44) : 13769 - 13778
  • [34] CO2-selective membranes for hydrogen production and CO2 capture - Part I: Membrane development
    Lin, Haiqing
    He, Zhenjie
    Sun, Zhen
    Vu, Jimmy
    Alvin Ng
    Mohammed, Moyeen
    Kniep, Jay
    Merkel, Timothy C.
    Wu, Tony
    Lambrecht, Robert C.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2014, 457 : 149 - 161
  • [35] Research and development issues in CO2 capture
    Meisen, A
    Shuai, XS
    [J]. ENERGY CONVERSION AND MANAGEMENT, 1997, 38 : S37 - S42
  • [36] Advances in the development of CO2 capture solvents
    Just, Paul-Emmanuel
    [J]. GHGT-11, 2013, 37 : 314 - 324
  • [37] CO2 capture technology development in 2013
    Dutcher, Bryce
    Fan, Maohong
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [38] Technological modifications in pilot research on CO2 capture process
    Spietz, Tomasz
    Wieclaw-Solny, Lucyna
    Tatarczuk, Adam
    Krotki, Aleksander
    Stec, Marcin
    [J]. CHEMIK, 2014, 68 (10): : 888 - 892
  • [39] Emission studies from a CO2 capture pilot plant
    da Silva, Eirik F.
    Kolderup, Herman
    Goetheer, Earl
    Hjarbo, Kai W.
    Huizinga, Arjen
    Khakharia, Purvil
    Tuinman, Ilse
    Mejdell, Thor
    Zahlsen, Kolbjorn
    Vernstad, Kai
    Hyldbakk, Astrid
    Holten, Torunn
    Kvamsdal, Hanne M.
    van Os, Peter
    Einbu, Aslak
    [J]. GHGT-11, 2013, 37 : 778 - 783
  • [40] A study of the CO2 capture pilot plant by amine absorption
    Kwak, No-Sang
    Lee, Ji Hyun
    Lee, In Young
    Jang, Kyung Ryoung
    Shim, Jae-Goo
    [J]. ENERGY, 2012, 47 (01) : 41 - 46