Linked Open Data-Enabled Recommender Systems: ESWC 2014 Challenge on Book Recommendation

被引:20
|
作者
Di Noia, Tommaso [1 ]
Cantador, Ivan [2 ]
Ostuni, Vito Claudio [1 ]
机构
[1] Politecn Bari, Dept Elect & Elect Engn, Bari, Italy
[2] Univ Autonoma Madrid, Dept Comp Sci, Madrid, Spain
来源
SEMANTIC WEB EVALUATION CHALLENGE | 2014年 / 475卷
关键词
HYBRID; DBPEDIA;
D O I
10.1007/978-3-319-12024-9_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this chapter we present a report of the ESWC 2014 Challenge on Linked Open Data-enabled Recommender Systems, which consisted of three tasks in the context of book recommendation: rating prediction in cold-start situations, top N recommendations from binary user feedback, and diversity in content-based recommendations. Participants were requested to address the tasks by means of recommendation approaches that made use of Linked Open Data and semantic technologies. In the chapter we describe the challenge motivation, goals and tasks, summarize and compare the nine final participant recommendation approaches, and discuss their experimental results and lessons learned. Finally, we end with some conclusions and potential lines of future research.
引用
收藏
页码:129 / 143
页数:15
相关论文
共 50 条
  • [41] A personalized clustering-based approach using open linked data for search space reduction in recommender systems
    da Costa, Arthur F.
    D'Addio, Rafael M.
    Fressato, Eduardo P.
    Manzato, Marcelo G.
    WEBMEDIA 2019: PROCEEDINGS OF THE 25TH BRAZILLIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB, 2019, : 409 - 416
  • [42] Moonshot or groundshot: addressing Europe's cancer challenge through a patient-focused, data-enabled lens
    Lawler, Mark
    Naredi, Peter
    Cufer, Tanja
    Banks, Ian
    Lievens, Yolande
    Vassal, Giles
    Aapro, Matti
    Sotlar, Maja Juznic
    Philip, Thierry
    Jassem, Jacek
    Pelouchova, Jana
    Meunier, Francoise
    Sullivan, Richard
    LANCET ONCOLOGY, 2019, 20 (11): : 1482 - 1485
  • [43] A Hybrid Multi-strategy Recommender System Using Linked Open Data
    Ristoski, Petar
    Mencia, Eneldo Loza
    Paulheim, Heiko
    SEMANTIC WEB EVALUATION CHALLENGE, 2014, 475 : 150 - 156
  • [44] A Hybrid User Profile Model for Personalized Recommender System with Linked Open Data
    Luo, Yang
    Xu, Boyi
    Cai, Hongming
    Bu, Fenglin
    2014 SECOND INTERNATIONAL CONFERENCE ON ENTERPRISE SYSTEMS (ES), 2014, : 243 - 248
  • [45] Combining Linked Open Data Similarity and Relatedness for Cross OSN Recommendation
    Boubenia, Mohamed
    Belkhir, Abdelkader
    Bouyakoub, Faycal M'hamed
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2020, 16 (02) : 59 - 90
  • [46] A replication study on implicit feedback recommender systems with application to the data visualization recommendation
    Lak, Parisa
    Bozanta, Aysun
    Kavaklioglu, Can
    Cevik, Mucahit
    Basar, Ayse
    Petitclerc, Martin
    Wills, Graham
    EXPERT SYSTEMS, 2022, 39 (04)
  • [47] Recommendation system based on multilingual entity matching on linked open data
    Xuan Hau Pham
    Jung, Jason J.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (02) : 589 - 599
  • [48] A systematic literature review of Linked Data-based recommender systems
    Figueroa, Cristhian
    Vagliano, Iacopo
    Rocha, Oscar Rodriguez
    Morisio, Maurizio
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (17): : 4659 - 4684
  • [49] Balancing the trade-off between accuracy and diversity in recommender systems with personalized explanations based on Linked Open Data
    Zanon, Andre Levi
    da Rocha, Leonardo Chaves Dutra
    Manzato, Marcelo Garcia
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [50] Visualizing the information of a Linked Open Data enabled Research Information System
    Dimou, Anastasia
    De Vocht, Laurens
    Van Grootel, Geert
    Van Campe, Leen
    Latour, Jeroen
    Mannens, Erik
    Van de Walle, Rik
    12TH INTERNATIONAL CONFERENCE ON CURRENT RESEARCH INFORMATION SYSTEMS (CRIS 2014): MANAGING DATA INTENSIVE SCIENCE: THE ROLE OF RESEARCH INFORMATION SYSTEMS IN REALISING THE DIGITAL AGENDA, 2014, 33 : 245 - 252