Fibroblast culture on poly(L-lactide-co-ε-caprolactone) an electrospun nanofiber sheet

被引:9
|
作者
Jang, Bong Seok [1 ,2 ]
Jung, Youngmee [1 ]
Kwon, Il Keun [2 ]
Mun, Cho Hay [1 ]
Kim, Soo Hyun [1 ]
机构
[1] Korea Inst Sci & Technol, Ctr Biomat, Seoul 136791, South Korea
[2] Kyung Hee Univ, Sch Dent, Dept Maxillofacial Biomed Engn, Seoul 130701, South Korea
关键词
electrospinning; PLCL; fibroblast cells; cell matrix engineering; DEGRADATION BEHAVIOR; IN-VITRO; SCAFFOLDS; FIBERS; CELLS;
D O I
10.1007/s13233-012-0180-5
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Electrospinning has been used to make a nanofibrous matrix for vascular tissue engineering applications. The poly(L-lactide-co-E >-caprolactone) (PLCL) copolymer (50:50), which is biodegradable and elastic, was used to fabricate electrospun nanofiber sheets with a thickness of 20-50 mu m. The objective of this study was to investigate the behavior of fibroblast cells on the PLCL electrospun sheet. The cell proliferation on the PLCL electrospun sheet was evaluated. The cell morphology was observed using scanning electron microscopy. Several coating materials were evaluated to increase cell adhesion, including fibronectin, Type-I collagen, and gelatin. Among the coating materials tested, Type-I collagen gave the best result. Cell proliferation at all cell densities was tested steadily increase up to 3 weeks. Single side cell seeding and double side cell seeding were compared. During cell proliferation for 3 and 7 days, the single side cell seeding slowly increased, whereas rapid cell growth was observed for the double side seeding. We evaluated the mechanical properties of electrospun nanofiber scaffolds cultured with different cell volumes. In these experiments, a higher cell volume resulted in higher tensile strength and Young's modulus. Further studies are being conducted to design a functional tubular vascular scaffold with adequate mechanical properties and architecture to promote cell growth.
引用
收藏
页码:1234 / 1242
页数:9
相关论文
共 50 条
  • [41] Surface modified poly(L-lactide-co-ε-caprolactone) microspheres as scaffold for tissue engineering
    Garkhal, Kalpna
    Verma, Shalini
    Tikoo, K.
    Kumar, Neeraj
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 82A (03) : 747 - 756
  • [42] Shape-memory behaviors of biodegradable poly(L-lactide-co-Ε- caprolactone) copolymers
    Lu, X.L.
    Cai, W.
    Gao, Z.Y.
    Journal of Applied Polymer Science, 2008, 108 (02): : 1109 - 1115
  • [43] Study on the shape memory effects of poly(L-lactide-co-ε-caprolactone) biodegradable polymers
    Lu, X. L.
    Sun, Z. J.
    Cai, W.
    Gao, Z. Y.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2008, 19 (01) : 395 - 399
  • [44] Highly Elastic Scaffolds Produced by Melt Electrowriting of Poly(L-lactide-co-ε-caprolactone)
    Sanchez Diaz, Raquel
    Park, Jong-Ryul
    Rodrigues, Leona L.
    Dalton, Paul D.
    De-Juan-Pardo, Elena M.
    Dargaville, Tim R.
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (04)
  • [45] Shape-memory behaviors of biodegradable poly(L-lactide-co-ε-caprolactone) copolymers
    Lu, X. L.
    Cai, W.
    Ga, Z. Y.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 108 (02) : 1109 - 1115
  • [46] Cyanoacrylate adhesives curable to flexible polymeric materials by poly(L-lactide-co-ε-caprolactone)
    Lim, Jin Ik
    Lee, Yong-Keun
    Shin, Jeon-Soo
    Lim, Kook-Jin
    MATERIALS LETTERS, 2010, 64 (22) : 2438 - 2440
  • [47] Study on the shape memory effects of poly(l-lactide-co-ε-caprolactone) biodegradable polymers
    X. L. Lu
    Z. J. Sun
    W. Cai
    Z. Y. Gao
    Journal of Materials Science: Materials in Medicine, 2008, 19 : 395 - 399
  • [48] Biodegradable electrospun poly(L-lactide-co-ε-caprolactone)/polyethylene glycol/bioactive glass composite scaffold for bone tissue engineering
    de Souza, Joyce R.
    Cardoso, Lais M.
    de Toledo, Priscila T. A.
    Rahimnejad, Maedeh
    Kito, Leticia T.
    Thim, Gilmar P.
    Campos, Tiago M. B.
    Borges, Alexandre L. S.
    Bottino, Marco C.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2024, 112 (05)
  • [49] Distinctive Degradation Behaviors of Electrospun Polyglycolide, Poly(DL-Lactide-co-Glycolide), and Poly(L-Lactide-co-ε-Caprolactone) Nanofibers Cultured With/Without Porcine Smooth Muscle Cells
    Dong, Yixiang
    Yong, Thomas
    Liao, Susan
    Chan, Casey K.
    Stevens, Molly M.
    Ramakrishna, Seeram
    TISSUE ENGINEERING PART A, 2010, 16 (01) : 283 - 298
  • [50] Mechanical properties of compliant double layered poly(L-lactide-co-ɛ-caprolactone) vascular graft
    Sang-Hoon Kim
    Cho Hay Mun
    Youngmee Jung
    Sang-Heon Kim
    Dong-Ik Kim
    Soo Hyun Kim
    Macromolecular Research, 2013, 21 : 886 - 891