共 50 条
The truncated Euler-Maruyama method for stochastic differential equations
被引:180
|作者:
Mao, Xuerong
[1
]
机构:
[1] Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, Scotland
基金:
英国工程与自然科学研究理事会;
关键词:
Stochastic differential equation;
Local Lipschitz condition;
Khasminskii-type condition;
Truncated Euler-Maruyama method;
Strong convergence;
STRONG-CONVERGENCE;
NUMERICAL-INTEGRATION;
SDES;
D O I:
10.1016/j.cam.2015.06.002
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Influenced by Higham et al. (2003), several numerical methods have been developed to study the strong convergence of the numerical solutions to stochastic differential equations (SDEs) under the local Lipschitz condition. These numerical methods include the tamed Euler-Maruyama (EM) method, the tamed Milstein method, the stopped EM, the backward EM, the backward forward EM, etc. In this paper we will develop a new explicit method, called the truncated EM method, for the nonlinear SDE dx(t) = f (x(t))dt + g (x(t))dB(t) and establish the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition x(T)f(x) + p-1/2 vertical bar g(x)vertical bar(2)) <= K (1+ vertical bar x vertical bar(2)). The type of convergence specifically addressed in this paper is strong-L-q convergence for 2 <= q < p, and p is a parameter in the Khasminskii-type condition. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:370 / 384
页数:15
相关论文