The Galois group of the category of mixed Hodge-Tate structures

被引:2
|
作者
Goncharov, Alexander [1 ]
Zhu, Guangyu [1 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06511 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2018年 / 24卷 / 01期
关键词
14F43;
D O I
10.1007/s00029-018-0393-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The category MHTQ of mixed Hodge-Tate structures over Q is a mixed Tate category. Thanks to the Tannakian formalism it is equivalent to the category of graded comodules over a commutative graded Hopf algebra H-center dot = circle plus H-infinity(n=0)n over Q. Since the category MHTQ has homological dimension one, H-center dot is isomorphic to the commutative graded Hopf algebra provided by the tensor algebra of the graded vector space given by the sum of Ext(MHTQ)(1) (Q(0), Q(n)) = C/(2 pi i)(n)Q over n > 0. However this isomorphism is not natural in any sense, e.g. does not exist in families. We give a natural construction of the Hopf algebra H-center dot. Namely, let C*(Q) := C* circle times Q. Set A(center dot)(C) := Q circle plus circle plus C-infinity(n=1)*(Q)circle times(Q) C circle times n-1. We provide it with a commutative graded Hopf algebra structure, such that H-center dot = A(center dot)(C). This implies another construction of the big period map H-n -> C*(Q) circle times C from Goncharov (JAMS 12(2):569-618, 1999. arXiv:alg-geom/9601021, Annales de la Faculte des Sciences de Toulouse XXV(2-3):397-459, 2016. arXiv:1510.07270). Generalizing this, we introduce a notion of a Tate dg-algebra (R, k(1)), and assign to it a Hopf dg-algebra A(center dot)(R). For example, the Tate algebra (C, 2 pi iQ) gives rise to the Hopf algebra A(center dot)(C). Another example of a Tate dg-algebra (Omega(center dot)(X), 2 pi iQ) is provided by the holomorphic de Rham complex Omega(center dot)(X) of a complex manifold X. The sheaf of Hopf dg-algebras A(center dot)(Omega(center dot)(X)) describes a dg-model of the derived category of variations of Hodge-Tate structures on X. The cobar complex of A(center dot)(Omega(center dot)(X)) is a dg-model for the rational Deligne cohomology of X. We consider a variant of our construction which starting from Fontaine's period rings B-crys/B-st produces graded/dg Hopf algebras which we relate to the p-adic Hodge theory.
引用
收藏
页码:303 / 358
页数:56
相关论文
共 50 条
  • [21] Constancy of generalized Hodge-Tate weights of a local system
    Shimizu, Koji
    [J]. COMPOSITIO MATHEMATICA, 2018, 154 (12) : 2606 - 2642
  • [22] ON THE HODGE-TATE DECOMPOSITION IN THE IMPERFECT RESIDUE FIELD CASE
    HYODO, O
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1986, 365 : 97 - 113
  • [23] Hodge-Tate decomposition for non-smooth spaces
    Guo, Haoyang
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (04) : 1553 - 1625
  • [24] CATEGORY OF MIXED PLECTIC HODGE STRUCTURES
    Bannai, Kenichi
    Hagihara, Kei
    Kobayashi, Shinichi
    Yamada, Kazuki
    Yamamoto, Shuji
    Yasuda, Seidai
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (01) : 31 - 76
  • [25] Application of dual Hodge-Tate in a Lubin-Tate group, Bruhat-tits tower in a linear group and ramification filtrations
    Fargues, Laurent
    [J]. DUKE MATHEMATICAL JOURNAL, 2007, 140 (03) : 499 - 590
  • [26] HODGE-TATE AND DE RHAM REPRESENTATIONS IN THE IMPERFECT RESIDUE FIELD CASE
    Morita, Kazuma
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2010, 43 (02): : 341 - 356
  • [27] HODGE-TATE PERIODS AND P-ADIC ABELIAN-INTEGRALS
    COLEMAN, RF
    [J]. INVENTIONES MATHEMATICAE, 1984, 78 (03) : 351 - 379
  • [28] ON INTRINSIC HODGE-TATE-NESS OF GALOIS REPRESENTATIONS OF DIMENSION TWO
    Hoshi, Yuichiro
    [J]. KODAI MATHEMATICAL JOURNAL, 2024, 47 (01) : 99 - 111
  • [29] A remark on potentially semi-stable representations of Hodge-Tate type (0,1)
    Joshi, K
    Kim, M
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (03) : 479 - 483
  • [30] A remark on potentially semi-stable representations of Hodge-Tate type (0,1)
    Kirti Joshi
    Minhyong Kim
    [J]. Mathematische Zeitschrift, 2002, 241 : 479 - 483