Minimax under Nonlinear transportation constraints

被引:0
|
作者
Mironov, AA
Tsurkov, VI
机构
[1] Moscow State Tech Univ Aviat, Moscow, Russia
[2] Russian Acad Sci, Ctr Comp, Moscow 117967, Russia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:351 / 354
页数:4
相关论文
共 50 条
  • [21] Open transportation models with a minimax criterion
    Mironov, AA
    Tsurkov, VI
    DOKLADY MATHEMATICS, 2001, 64 (03) : 374 - 377
  • [22] Closed transportation models with minimax criterion
    Mironov, AA
    Tsurkov, VI
    AUTOMATION AND REMOTE CONTROL, 2002, 63 (03) : 388 - 398
  • [23] Closed Transportation Models with Minimax Criterion
    A. A. Mironov
    V. I. Tsurkov
    Automation and Remote Control, 2002, 63 : 388 - 398
  • [24] Open transportation models by minimax criterion
    Mironov, A.A.
    Tsurkov, V.I.
    Doklady Akademii Nauk, 2001, 381 (04) : 448 - 452
  • [25] Multi-site scheduling under production and transportation constraints
    H'Mida, Fehmi
    Lopez, Pierre
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2013, 26 (03) : 252 - 266
  • [26] Online Learning under Adversarial Nonlinear Constraints
    Kolev, Pavel
    Martius, Georg
    Muehlebach, Michael
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [27] Synchronization of nonlinear systems under information constraints
    Fradkov, Alexander L.
    Andrievsky, Boris
    Evans, Robin J.
    CHAOS, 2008, 18 (03)
  • [28] Oscillations in nonlinear systems under phase constraints
    Portnykh, VA
    Sadovskii, BN
    AUTOMATION AND REMOTE CONTROL, 2000, 61 (02) : 226 - 231
  • [29] Nonlinear H∞-control under unilateral constraints
    Montano, O. E.
    Orlov, Y.
    Aoustin, Y.
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (12) : 2549 - 2571
  • [30] Feasible generalized monotone line search SQP algorithm for nonlinear minimax problems with inequality constraints
    Jian, Jin-bao
    Quan, Ran
    Zhang, Xue-lu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) : 406 - 429