Dry sliding wear characteristics of in-situ TiBw/Ti6Al4V composites with different network parameters

被引:42
|
作者
An, Qi [2 ]
Huang, L. J. [1 ,2 ]
Bao, Yang [2 ]
Zhang, Rui [2 ]
Jiang, Shan [2 ]
Geng, Lin [1 ,2 ]
Xiao, Miaomiao [2 ]
机构
[1] Harbin Inst Technol, State Key Lab Adv Welding & Joining, POB 433, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Key Lab Adv Struct Funct Integrat Mat & Green Mfg, Sch Mat Sci & Engn, POB 433, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Titanium matrix composites (TMCs); Network structure; Dry sliding wear; Heat treatment; TITANIUM MATRIX COMPOSITES; MECHANICAL-PROPERTIES; HEAT-TREATMENT; MICROSTRUCTURE; COATINGS; BEHAVIOR; TI-6AL-4V; EVOLUTION; ALLOY; TI;
D O I
10.1016/j.triboint.2018.01.053
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Ceramics reinforced titanium matrix composites (TMCs) exhibited high specific strength especially with a special network architecture. This study investigated wear characteristics of the novel TMCs with different parameters, the results show that in-situ TiBw enhances hardness and resists abrasion effectively. Meanwhile, the mechanism varied from micro-cutting to brittle debonding with increasing TiBw content, and increasing network size caused the increase of COF and wear loss. Consequently, the composite with 8.5 vol.% TiBw and network size of 60 mu m exhibited the best wear properties. Moreover, the subsequent heat treatment further enhanced the abrasion resistance by transformed beta phase coexisted with network structure, which resulted in decrease of COF from 0.251 to 0.149 and reduced wear loss by 19.7%.
引用
收藏
页码:252 / 259
页数:8
相关论文
共 50 条
  • [1] Superplastic tensile characteristics of in situ TiBw/Ti6Al4V composites with novel network microstructure
    Huang, L. J.
    Zhang, Y. Z.
    Liu, B. X.
    Song, X. Q.
    Geng, L.
    Wu, L. Z.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 581 : 128 - 132
  • [2] In situ (TiBw + TiCp)/Ti6Al4V composites with a network reinforcement distribution
    Huang, L. J.
    Geng, L.
    Peng, H. X.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (24-25): : 6723 - 6727
  • [3] Dry sliding wear mechanisms of the Ti6Al4V alloy
    Dipto. di Ingegneria dei Materiali, Università di Trento , Trento, Italy
    不详
    Wear, 1-2 (105-112):
  • [4] Dry sliding wear mechanisms of the Ti6Al4V alloy
    Molinari, A
    Straffelini, G
    Tesi, B
    Bacci, T
    WEAR, 1997, 208 (1-2) : 105 - 112
  • [5] Hot Simulation Compression of in Situ TiBw/Ti6Al4V Composites with Novel Network Microstructure
    Huang, Lujun
    Zhang, Yuzi
    Geng, Lin
    PHYSICAL AND NUMERICAL SIMULATION OF MATERIALS PROCESSING VII, 2013, 762 : 382 - +
  • [6] Effects of sintering parameters on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composites with a novel network architecture
    Huang, L. J.
    Geng, L.
    Peng, H. X.
    Balasubramaniam, K.
    Wang, G. S.
    MATERIALS & DESIGN, 2011, 32 (06): : 3347 - 3353
  • [7] Significantly enhanced creep resistance of low volume fraction in-situ TiBw/Ti6Al4V composites by architectured network reinforcements
    S. Wang
    L. J. Huang
    L. Geng
    F. Scarpa
    Y. Jiao
    H. X. Peng
    Scientific Reports, 7
  • [8] Friction and Wear Performance of in-Situ (TiC+TiB)/Ti6Al4V Composites
    Xue, Bai
    Jin Yunxue
    Xuan, Lu
    Chen Yanan
    RARE METAL MATERIALS AND ENGINEERING, 2018, 47 (12) : 3624 - 3628
  • [9] Significantly enhanced creep resistance of low volume fraction in-situ TiBw/Ti6Al4V composites by architectured network reinforcements
    Wang, S.
    Huang, L. J.
    Geng, L.
    Scarpa, F.
    Jiao, Y.
    Peng, H. X.
    SCIENTIFIC REPORTS, 2017, 7
  • [10] High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture
    Huang, L. J.
    Geng, L.
    Peng, H. X.
    Kaveendran, B.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 534 : 688 - 692