Some results of Young-type inequalities

被引:13
|
作者
Ren, Yonghui [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
关键词
Arithmetic-geometric-harmonic; Kantorovich constant; Young-type inequalities; GEOMETRIC MEAN INEQUALITY;
D O I
10.1007/s13398-020-00880-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, one of our main targets is to present some improvements of Young-type inequalities due to Alzer et al. (Linear Multilinear Algebra 63(3):622-635, 2015) under some conditions. That is to say: when 0 < nu, tau < 1, a, b > 0, we have a del(nu)b - a#(nu)b/a del(tau)b - a#(tau)b <= nu(1 - nu)/tau(1 - tau) and (a del(nu)b)(2) - (a#(nu)b)(2)/(a del(tau)b)(2) - (a#(tau)b)(2) <= nu(1 - nu)/tau(1 - tau) for (b - a)( tau -nu) >= 0; and the inequalities are reversed if (b - a)(tau - nu) <= 0. In addition, we show a new Young-type inequality (1 - v(N+1) + v(N+2))a + (1 - v(2))b <= v(vN-(N+1))a(v)b(1-v) + (root a - root b)(2) for 0 <= nu <= 1, N is an element of N and a, b > 0. Then we can get some related results about operators, Hilbert-Schmidt norms, determinants by these scalars results.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] Aharon-Vaidman quantum game with a Young-type photonic qutrit
    Kolenderski, Piotr
    Sinha, Urbasi
    Li Youning
    Zhao, Tong
    Volpini, Matthew
    Cabello, Adan
    Laflamme, Raymond
    Jennewein, Thomas
    PHYSICAL REVIEW A, 2012, 86 (01):
  • [32] Different types of coherence: Young-type interference versus Dicke superradiance
    Bhatti, D.
    Bojer, M.
    von Zanthier, J.
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [33] Young-type interferences in the ionization of the H2 molecule by fast ions
    Sulik, B.
    Tanis, J. A.
    Chesnel, J. -Y.
    Stolterfoht, N.
    PHYSICA SCRIPTA, 2004, T110 : 345 - 349
  • [34] Hardy type inequalities with kernels: The current status and some new results
    Kufner, Alois
    Persson, Lars-Erik
    Samko, Natasha
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (01) : 57 - 65
  • [35] SOME NEW GENERALIZED RESULTS ON OSTROWSKI TYPE INTEGRAL INEQUALITIES WITH APPLICATION
    Qayyum, A.
    Shoaib, M.
    Faye, Ibrahima
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (04) : 693 - 712
  • [36] SOME MAXIMAL TYPE INEQUALITIES FOR N-DEMIMARTINGALES AND RELATED RESULTS
    Yang, Wenzhi
    Hu, Shuhe
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 731 - 747
  • [37] REVERSES OF YOUNG TYPE INEQUALITIES
    Burqan, Aliaa
    Khandaqji, Mona
    Journal of Mathematical Inequalities, 2015, 9 (01): : 113 - 120
  • [38] Young type inequalities for matrices
    Peng, Yang
    Italian Journal of Pure and Applied Mathematics, 2014, 32 : 515 - 518
  • [39] YOUNG TYPE INEQUALITIES FOR MATRICES
    Peng, Yang
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (32): : 515 - 518
  • [40] Young-type interference in ionizing collisions between helium and hydrogen molecular ions
    Zhang, S. F.
    Ma, X.
    Fischer, D.
    Moshammer, R.
    Voitkiv, A.
    Suske, J.
    Kuehnel, K. U.
    Hagmann, S.
    Krauss, A.
    Zhang, R. T.
    Guo, D. L.
    Ullrich, J.
    XXVII INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC 2011), PTS 1-15, 2012, 388