From arbitrage to arbitrage-free implied volatilities

被引:9
|
作者
Grzelak, Lech A. [1 ,2 ]
Oosterlee, Cornelis W. [1 ,3 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, Mekelweg 4, NL-2628 CD Delft, Netherlands
[2] ING, Quantiat Analyt, Bijlmerpl 79, NL-1102 BH Amsterdam, Netherlands
[3] CWI Natl Res Inst Math & Comp Sci, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
关键词
arbitrage-free density; collocation method; orthogonal projection; arbitrage-free volatility; SCMC sampler; implied volatility parameterization; DIFFERENTIAL-EQUATIONS;
D O I
10.21314/JCF.2016.316
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose a method for determining an arbitrage-free density implied by the Hagan formula. (We use the wording "Hagan formula" as an abbreviation of the Hagan-Kumar- Lesniewski-Woodward model.) Our method is based on the stochastic collocation method. The principle is to determine a few collocation points on the implied survival distribution function and project them onto the polynomial of an arbitrage-free variable for which we choose the Gaussian variable. In this way, we have equality in probability at the collocation points while the generated density is arbitrage free. Analytic European option prices are available, and the implied volatilities stay very close to those initially obtained by the Hagan formula. The proposed method is very fast and straightforward to implement, as it only involves one-dimensional Lagrange interpolation and the inversion of a linear system of equations. The method is generic and may be applied to other variants or other models that generate arbitrage.
引用
收藏
页码:31 / 49
页数:19
相关论文
共 50 条
  • [21] ARBITRAGE-FREE INTERPOLATION OF THE SWAP CURVE
    Davis, Mark H. A.
    Mataix-Pastor, Vicente
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2009, 12 (07) : 969 - 1005
  • [22] Remarks on an arbitrage-free condition for XVA
    Tanaka, Akihiro
    [J]. JSIAM LETTERS, 2019, 11 : 57 - 60
  • [23] ON VOLATILITY OF PRICES IN ARBITRAGE-FREE MARKETS
    HINDY, A
    [J]. ECONOMIC THEORY, 1995, 6 (03) : 421 - 438
  • [24] Term structures of implied volatilities: Absence of arbitrage and existence results
    Schweizer, Martin
    Wissel, Johannes
    [J]. MATHEMATICAL FINANCE, 2008, 18 (01) : 77 - 114
  • [25] Arbitrage-free SVI volatility surfaces
    Gatheral, Jim
    Jacquier, Antoine
    [J]. QUANTITATIVE FINANCE, 2014, 14 (01) : 59 - 71
  • [26] FINITE HORIZON ARBITRAGE-FREE SECURITY MARKETS
    张顺明
    王毓云
    [J]. Acta Mathematica Scientia, 1998, (02) : 203 - 211
  • [27] Finite difference techniques for arbitrage-free SABR
    Le Floc'h, Fabien
    Kennedy, Gary
    [J]. JOURNAL OF COMPUTATIONAL FINANCE, 2017, 20 (03) : 51 - 79
  • [28] Generalized Arbitrage-Free SVI Volatility Surfaces
    Guo, Gaoyue
    Jacquier, Antoine
    Martini, Claude
    Neufcourt, Leo
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2016, 7 (01): : 619 - 641
  • [29] Comonotonic asset prices in arbitrage-free markets
    Dhaene, Jan
    Kukush, Alexander
    Linders, Daniel
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 364
  • [30] Arbitrage-free valuation of a federal timber lease
    Burnes, E
    Thomann, E
    Waymire, EC
    [J]. FOREST SCIENCE, 1999, 45 (04) : 473 - 483