Optimal decay rates for the system of elastic waves in Rn with structural damping

被引:10
|
作者
Ikehata, Ryo [1 ]
Charao, Ruy Coimbra [2 ]
da Luz, Cleverson Roberto [2 ]
机构
[1] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
[2] Univ Fed Santa Catarina, Dept Math, Florianopolis, SC, Brazil
关键词
Structural damping; elastic wave equation; Fourier analysis; energy method; low frequency; high frequency; optimal decay; BOUNDARY-VALUE-PROBLEM; ENERGY DECAY; EQUATIONS;
D O I
10.1007/s00028-014-0216-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem in R (n) for the system of elastic waves with structural damping. We derive (almost) optimal decay rates in time for the L (2)-norm and the total energy which improves previous results for this system. To derive the estimates for elastic waves, we employ an improvement in a method in the Fourier space, which was developed in our previous works. Our estimates came from those for a generalized energy of alpha-order in the Fourier space.
引用
收藏
页码:197 / 210
页数:14
相关论文
共 50 条
  • [21] Optimal convergence rates to nonlinear diffusion waves for the compressible Euler-Poisson system with damping
    Ma, Hongfang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) : 511 - 529
  • [22] Optimal decay rates for the acoustic wave motions with boundary memory damping
    Benomar, Khalida
    Benaissa, Abbes
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (03): : 471 - 482
  • [23] Decay rates of Volterra equations on RN
    Conti, Monica
    Gatti, Stefania
    Pata, Vittorino
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2007, 5 (04): : 720 - 732
  • [24] Polynomial decay of an elastic/viscoelastic waves interaction system
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [25] Polynomial decay of an elastic/viscoelastic waves interaction system
    Qiong Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [26] Decay rates for Bresse system with arbitrary nonlinear localized damping
    Charles, Wenden
    Soriano, J. A.
    Falcao Nascimento, Flavio A.
    Rodrigues, J. H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2267 - 2290
  • [27] Decay rates for solutions of a Maxwell system with nonlinear boundary damping
    Eller, M.
    Lagnese, J. E.
    Nicaise, S.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2002, 21 (01): : 135 - 165
  • [28] DECAY RATES FOR TIMOSHENKO SYSTEM WITH NONLINEAR ARBITRARY LOCALIZED DAMPING
    Santos, M. L.
    Almeida Junior, D. S.
    Rodrigues, J. H.
    Falcao Nascimento, Flavio A.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (1-2) : 1 - 26
  • [29] Decay Rates for a Coupled Viscoelastic Lame System with Strong Damping
    Feng, Baowei
    Li, Haiyan
    MATHEMATICAL MODELLING AND ANALYSIS, 2020, 25 (02) : 226 - 240
  • [30] Rates of Decay for Porous Elastic System Weakly Dissipative
    Santos, M. L.
    Campelo, A. D. S.
    Almeida Junior, D. S.
    ACTA APPLICANDAE MATHEMATICAE, 2017, 151 (01) : 1 - 26