Core-shell alginate@silica microparticles encapsulating probiotics

被引:15
|
作者
Haffner, F. B. [1 ,2 ]
Girardon, M. [1 ,2 ]
Fontanay, S. [1 ,2 ,3 ]
Canilho, N. [1 ,2 ]
Duval, R. E. [1 ,2 ,3 ]
Mierzwa, M. [4 ,5 ]
Etienne, M. [4 ,5 ]
Diab, R. [1 ,2 ]
Pasc, A. [1 ,2 ]
机构
[1] CNRS, SRSMC, UMR 7565, Nancy, France
[2] Univ Lorraine, SRSMC, UMR 7565, Nancy, France
[3] ABC Platform, F-54001 Nancy, France
[4] CNRS, 405 Rue Vandoeuvre, F-54600 Villers Les Nancy, France
[5] Univ Lorraine, LCPME, UMR 7564, 405 Rue Vandoeuvre, F-54600 Villers Les Nancy, France
关键词
MACROPOROUS SILICA; LIVING CELLS; BACTERIA; NANOPARTICLES; GROWTH; IMMOBILIZATION; MICROSPHERES; DELIVERY; YEAST;
D O I
10.1039/c6tb02802k
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Lactobacillus rhamnosus GG (LGG) was encapsulated in core shell alginate silica microcapsules by coating the electrosprayed ionogel with a silica shell via hydrolysis/condensation of alkoxysilane precursors. The viability of encapsulated LGG highly depends on the mineralisation conditions (in aquedus or organic phases), identified as a critical step. More importantly, due to the unswelling of silica and to its mesoporosity that allows nutriment-metabolite diffusion, it was possible to avoid cell leakage and additionally insure bacterial growth inside the microcapsules. The results of this work gave a proof-of-concept for controlled bacterial proliferation in microcompartments, which have straightforward applications in oral delivery of probiotics.
引用
收藏
页码:7929 / 7935
页数:7
相关论文
共 50 条
  • [41] The preparation of core/shell composite microparticles based on silica as core and poly (tert-butylmethacrylate) as shell
    Liu, XY
    Zhao, HP
    Li, L
    Yan, J
    Ma, Y
    Zha, LS
    [J]. Proceedings of 2005 International Conference on Advanced Fibers and Polymer Materials (ICAFPM 2005), Vol 1 and 2: NEW CENTURY , NEW MATERIALS AND NEW LIFE, 2005, : 829 - 833
  • [42] Synthesis of gold-silica core-shell nanostructures
    Jeffries, Jamie
    Nasser, Sarah
    Ruta, Kristen
    Altahan, Ola
    Bandyopadhyay, Krisanu
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [43] Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles
    Pang, Suh Cem
    Kho, Sze Yun
    Chin, Suk Fun
    [J]. JOURNAL OF NANOMATERIALS, 2012, 2012
  • [44] Synthesis of superhydrophobic core-shell mesoporous silica nanoparticles
    Chantarak, Sirinya
    Chang, Jooyoung
    Suwanboon, Sumetha
    Riyajan, Saad
    [J]. JOURNAL OF POROUS MATERIALS, 2018, 25 (05) : 1391 - 1399
  • [45] Cobalt and silica based core-shell structured nanospheres
    Salgueirino-Maceira, Veronica
    Correa-Duarte, Miguel A.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (36) : 3593 - 3597
  • [46] Synthesis of a core-shell silica nanoplatform for multimodality imaging
    Veach, Alexander J.
    Drewes, Jennifer
    Zeglis, Brian M.
    Bradbury, Michelle
    Wiesner, Ulrich
    Lewis, Jason S.
    [J]. JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS, 2011, 54 : S540 - S540
  • [47] Core-shell microparticles for protein sequestration and controlled release of a protein-laden core
    Rinker, Torri E.
    Philbrick, Brandon D.
    Temenoff, Johnna S.
    [J]. ACTA BIOMATERIALIA, 2017, 56 : 91 - 101
  • [48] Core-shell microparticles for the enrichment and discovery of cationic antimicrobial peptides (CAMPs)
    Zhu, Yaling
    Ueberheide, Beatrix
    Bishop, Barney
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [49] Core-shell spheroidal microparticles with polystyrene cores and rich in polyglycidol shells
    Komar, Patrycja
    Gosecka, Monika
    Gadzinowski, Mariusz
    Gosecki, Mateusz
    Makowski, Tomasz
    Slomkowski, Stanislaw
    Basinska, Teresa
    [J]. POLYMER, 2018, 146 : 6 - 11
  • [50] Bright emissive core-shell spherical microparticles for shock compression spectroscopy
    Christensen, James M.
    Banishev, Alexandr A.
    Dlott, Dana D.
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 116 (03)