Fast ion confinement and stability in a neutral beam injected reversed field pinch

被引:21
|
作者
Anderson, J. K. [1 ]
Almagri, A. F. [1 ]
Den Hartog, D. J. [1 ]
Eilerman, S. [1 ]
Forest, C. B. [1 ]
Koliner, J. J. [1 ]
Mirnov, V. V. [1 ]
Morton, L. A. [1 ]
Nornberg, M. D. [1 ]
Parke, E. [1 ]
Reusch, J. A. [1 ]
Sarff, J. S. [1 ]
Waksman, J. [1 ]
Belykh, V. [2 ]
Davydenko, V. I. [2 ]
Ivanov, A. A. [2 ]
Polosatkin, S. V. [2 ]
Tsidulko, Y. A. [2 ]
Lin, L. [3 ]
Liu, D. [4 ]
Fiksel, G. [5 ]
Sakakita, H. [6 ]
Spong, D. A. [7 ]
Titus, J. [8 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
[3] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[4] Univ Calif Irvine, Irvine, CA 92697 USA
[5] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[6] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan
[7] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[8] Florida A&M Univ, Tallahassee, FL 32307 USA
基金
美国国家科学基金会;
关键词
TOKAMAK; TRANSPORT; HEAT;
D O I
10.1063/1.4801749
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3-5% D-2) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvenic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive similar to 50 mu s bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions. (C) 2013 AIP Publishing LLC
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Fast Ion Transport in the Three-Dimensional Reversed-Field Pinch
    Bonofiglo, P. J.
    Anderson, J. K.
    Boguski, J.
    Kim, J.
    Egedal, J.
    Gobbin, M.
    Spong, D. A.
    Parke, E.
    PHYSICAL REVIEW LETTERS, 2019, 123 (05)
  • [22] Improved confinement in a high pinch parameter region of the reversed field pinch plasma
    Hirano, Y
    Maejima, Y
    Shimada, T
    Hirota, I
    Yagi, Y
    NUCLEAR FUSION, 1996, 36 (06) : 721 - 733
  • [24] STABILITY OF AN ION BEAM INJECTED INTO A PLASMA ACROSS A MAGNETIC FIELD
    MIKHAILOVSKII, AB
    PASHITSK.EA
    SOVIET PHYSICS TECHNICAL PHYSICS-USSR, 1966, 10 (11): : 1507 - +
  • [25] Field Reversed Configuration Confinement Enhancement through Edge Biasing and Neutral Beam Injection
    Tuszewski, M.
    Smirnov, A.
    Thompson, M. C.
    Korepanov, S.
    Akhmetov, T.
    Ivanov, A.
    Voskoboynikov, R.
    Schmitz, L.
    Barnes, D.
    Binderbauer, M. W.
    Brown, R.
    Bui, D. Q.
    Clary, R.
    Conroy, K. D.
    Deng, B. H.
    Dettrick, S. A.
    Douglass, J. D.
    Garate, E.
    Glass, F. J.
    Gota, H.
    Guo, H. Y.
    Gupta, D.
    Gupta, S.
    Kinley, J. S.
    Knapp, K.
    Longman, A.
    Hollins, M.
    Li, X. L.
    Luo, Y.
    Mendoza, R.
    Mok, Y.
    Necas, A.
    Primavera, S.
    Ruskov, E.
    Schroeder, J. H.
    Sevier, L.
    Sibley, A.
    Song, Y.
    Sun, X.
    Trask, E.
    Van Drie, A. D.
    Walters, J. K.
    Wyman, M. D.
    PHYSICAL REVIEW LETTERS, 2012, 108 (25)
  • [26] Numerical studies of confinement scaling in the conventional reversed field pinch
    Scheffel, J
    Schnack, DD
    NUCLEAR FUSION, 2000, 40 (11) : 1885 - 1896
  • [27] PLASMA CONFINEMENT IN A HIGH-BETA REVERSED FIELD PINCH
    BODIN, HAB
    GOWERS, CW
    KIDD, D
    NEWTON, AA
    PASCO, IK
    ROBINSON, DC
    VERHAGE, AJL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1030 - 1030
  • [28] Confinement scaling laws for the conventional reversed-field pinch
    Scheffel, J
    Schnack, DD
    PHYSICAL REVIEW LETTERS, 2000, 85 (02) : 322 - 325
  • [29] Enhanced confinement with plasma biasing in the MST reversed field pinch
    Craig, D
    Almagri, AF
    Anderson, JK
    Chapman, JT
    Chiang, CS
    Crocker, NA
    DenHartog, DJ
    Fiksel, G
    Prager, SC
    Sarff, JS
    Stoneking, MR
    PHYSICAL REVIEW LETTERS, 1997, 79 (10) : 1865 - 1868
  • [30] Turbulence and particle confinement in a reversed-field pinch plasma
    Frassinetti, L.
    Yambe, K.
    Kiyama, S.
    Hirano, Y.
    Koguchi, H.
    Sakakita, H.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (03) : 199 - 209