Non-Boussinesq convection at moderate Rayleigh numbers in low temperature gaseous helium

被引:20
|
作者
Sameen, A. [1 ]
Verzicco, R. [2 ]
Sreenivasan, K. R. [1 ]
机构
[1] Int Ctr Theoret Phys, I-34014 Trieste, Italy
[2] Univ Roma Tor Vergata, I-00173 Rome, Italy
关键词
D O I
10.1088/0031-8949/2008/T132/014053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the effects of severe non-Boussinesq conditions on thermal convection at the moderate Rayleigh numbers of Ra = 2 x 10(8) and 2 x 10(9) by resorting to direct numerical computations of the full governing equations. We illustrate the effects by considering low temperature gaseous helium. The properties of helium are allowed to depend on the temperature around the mean of 5.4 K. The Nusselt number is shown to decrease as the system departs from the Boussinesq approximation. For the Rayleigh numbers chosen here, the role of viscosity in thermal convection is limited to smudging the plume generation at the bottom surface, whereas the thermal expansion coefficient is demonstrated to have a larger impact on heat transport.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Onset of convection in the Rayleigh-Benard flow under non-Boussinesq conditions: an asymptotic approach
    Severin, J
    Herwig, H
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2001, 66 (04): : 185 - 191
  • [22] Rayleigh-Benard-Marangoni convection in a weakly non-Boussinesq fluid layer with a deformable surface
    Lyubimov, D. V.
    Lyubimova, T. P.
    Lobov, N. I.
    Alexander, J. I. D.
    PHYSICS OF FLUIDS, 2018, 30 (02)
  • [23] Non-Boussinesq stability analysis of natural-convection gaseous flow on inclined hot plates
    Rajamanickam, Prabakaran
    Coenen, Wilfried
    Sanchez, Antonio L.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 109 : 949 - 957
  • [24] Non-Oberbeck-Boussinesq effects in gaseous Rayleigh-Benard convection
    Ahlers, Guenter
    Araujo, Francisco Fontenele
    Funfschilling, Denis
    Grossmann, Siegfried
    Lohse, Detlef
    PHYSICAL REVIEW LETTERS, 2007, 98 (05)
  • [25] Non-Boussinesq conjugate natural convection in a vertical annulus
    Reddy, P. Venkata
    Narasimham, G. S. V. L.
    Rao, S. V. Raghurama
    Johny, T.
    Kasiviswanathan, K. V.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2010, 37 (09) : 1230 - 1237
  • [26] Non-Boussinesq effect: Thermal convection with broken symmetry
    Zhang, J
    Childress, S
    Libchaber, A
    PHYSICS OF FLUIDS, 1997, 9 (04) : 1034 - 1042
  • [27] root 2:1 Resonance in non-Boussinesq convection
    Proctor, MRE
    Matthews, PC
    PHYSICA D, 1996, 97 (1-3): : 229 - 241
  • [29] Convective and absolute instabilities in non-Boussinesq mixed convection
    Sergey A. Suslov
    Theoretical and Computational Fluid Dynamics, 2007, 21 : 271 - 290
  • [30] NON-BOUSSINESQ EFFECTS IN FREE THERMAL-CONVECTION
    WU, XZ
    LIBCHABER, A
    PHYSICAL REVIEW A, 1991, 43 (06): : 2833 - 2839