On the Oscillation of nth Order Dynamic Equations on Time-Scales

被引:17
|
作者
Grace, Said R. [1 ]
机构
[1] Cairo Univ, Fac Engn, Dept Engn Math, Giza 12221, Egypt
关键词
Oscillation; nth order; dynamic equation; time-scale;
D O I
10.1007/s00009-012-0201-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some new criteria for the oscillation of even order dynamic equation (a(t)(x(Delta n-1) (t))(alpha))(Delta) + q(t)(x(sigma)(t))(lambda) = 0 on an unbounded above time scale T, where alpha and lambda are the ratios of positive odd integers, a and q is a real valued positive rd-continuous functions defined on T.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 50 条
  • [31] Oscillation of second order superlinear dynamic equations with damping on time scales
    Hassan, Taher S.
    Erbe, Lynn
    Peterson, Allan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) : 550 - 558
  • [32] An oscillation theorem for second order superlinear dynamic equations on time scales
    Jia Baoguo
    Erbe, Lynn
    Peterson, Allan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (20) : 10333 - 10342
  • [33] Forced Oscillation of Second Order Nonlinear Dynamic Equations on Time Scales
    Huang, Mugen
    Feng, Weizhen
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2008, (36) : 1 - 13
  • [34] Oscillation of higher-order neutral dynamic equations on time scales
    Raziye Mert
    Advances in Difference Equations, 2012
  • [35] Oscillation of even order nonlinear delay dynamic equations on time scales
    Lynn Erbe
    Raziye Mert
    Allan Peterson
    Ağacık Zafer
    Czechoslovak Mathematical Journal, 2013, 63 : 265 - 279
  • [36] Oscillation of Linear Second Order Delay Dynamic Equations on Time Scales
    Agwo, Hassan Ahmed
    KYUNGPOOK MATHEMATICAL JOURNAL, 2007, 47 (03): : 425 - 438
  • [37] Oscillation of second-order delay dynamic equations on time scales
    School of Sciences, University of Jinan, Jinan 250022, China
    不详
    Zhongshan Daxue Xuebao, 2007, 6 (10-13):
  • [38] Oscillation and Nonoscillatory Criteria of Higher Order Dynamic Equations on Time Scales
    Zhu, Ya-Ru
    Mao, Zhong-Xuan
    Tian, Jing-Feng
    Zhang, Ya-Gang
    Lin, Xin-Ni
    MATHEMATICS, 2022, 10 (05)
  • [39] Oscillation of third-order functional dynamic equations on time scales
    Saker, Samir H.
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (12) : 2597 - 2614
  • [40] OSCILLATION FOR NONLINEAR SECOND-ORDER DYNAMIC EQUATIONS ON TIME SCALES
    Xu Yancong (College of Science
    Annals of Applied Mathematics, 2008, (04) : 457 - 469