xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data

被引:274
|
作者
Uppal, Karan [1 ,6 ]
Soltow, Quinlyn A. [2 ]
Strobel, Frederick H. [3 ]
Pittard, W. Stephen [1 ]
Gernert, Kim M. [1 ]
Yu, Tianwei [4 ]
Jones, Dean P. [2 ,5 ]
机构
[1] Emory Univ, Sch Med, BimCore, Atlanta, GA USA
[2] Emory Univ, Dept Med, Div Pulm Allergy & Crit Care, Atlanta, GA 30322 USA
[3] Emory Univ, Mass Spectrometry Ctr, Atlanta, GA 30322 USA
[4] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
[5] Emory Univ, Clin Biomarkers Lab, Atlanta, GA 30322 USA
[6] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA
来源
BMC BIOINFORMATICS | 2013年 / 14卷
基金
美国国家卫生研究院;
关键词
OPEN-SOURCE SOFTWARE; MASS; ALIGNMENT; ALGORITHMS; FRAMEWORK; OPENMS; MZMINE; SUITE;
D O I
10.1186/1471-2105-14-15
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Detection of low abundance metabolites is important for de novo mapping of metabolic pathways related to diet, microbiome or environmental exposures. Multiple algorithms are available to extract m/z features from liquid chromatography-mass spectral data in a conservative manner, which tends to preclude detection of low abundance chemicals and chemicals found in small subsets of samples. The present study provides software to enhance such algorithms for feature detection, quality assessment, and annotation. Results: xMSanalyzer is a set of utilities for automated processing of metabolomics data. The utilites can be classified into four main modules to: 1) improve feature detection for replicate analyses by systematic re-extraction with multiple parameter settings and data merger to optimize the balance between sensitivity and reliability, 2) evaluate sample quality and feature consistency, 3) detect feature overlap between datasets, and 4) characterize high-resolution m/z matches to small molecule metabolites and biological pathways using multiple chemical databases. The package was tested with plasma samples and shown to more than double the number of features extracted while improving quantitative reliability of detection. MS/MS analysis of a random subset of peaks that were exclusively detected using xMSanalyzer confirmed that the optimization scheme improves detection of real metabolites. Conclusions: xMSanalyzer is a package of utilities for data extraction, quality control assessment, detection of overlapping and unique metabolites in multiple datasets, and batch annotation of metabolites. The program was designed to integrate with existing packages such as apLCMS and XCMS, but the framework can also be used to enhance data extraction for other LC/MS data software.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data
    Karan Uppal
    Quinlyn A Soltow
    Frederick H Strobel
    W Stephen Pittard
    Kim M Gernert
    Tianwei Yu
    Dean P Jones
    BMC Bioinformatics, 14
  • [2] MRMkit: Automated Data Processing for Large-Scale Targeted Metabolomics Analysis
    Teo, Guoshou
    Chew, Wee Siong
    Burla, Bo J.
    Herr, Deron
    Tai, E. Shyong
    Wenk, Markus R.
    Torta, Federico
    Choi, Hyungwon
    ANALYTICAL CHEMISTRY, 2020, 92 (20) : 13677 - 13682
  • [3] MRMQuant: Automated MRM Data Quantitation for Large-Scale Targeted Metabolomics Analysis
    Lynn, Ke-Shiuan
    Tang, Hsiang-Yu
    Lo, Chi-Jen
    Yang, Cheng-Hung
    Tseng, Yi-Ting
    Cheng, Mei-Ling
    ANALYTICAL CHEMISTRY, 2024, 96 (33) : 13625 - 13635
  • [4] Large-Scale Non-Targeted Metabolomics Reveals Antioxidant, Nutraceutical and Therapeutic Potentials of Sorghum
    Ramalingam, Ajay Prasanth
    Mohanavel, Williams
    Premnath, Ameena
    Muthurajan, Raveendran
    Prasad, P. V. Vara
    Perumal, Ramasamy
    ANTIOXIDANTS, 2021, 10 (10)
  • [5] Automated supervised learning pipeline for non-targeted GC-MS data analysis
    Sirén K.
    Fischer U.
    Vestner J.
    Analytica Chimica Acta: X, 2019, 1
  • [6] Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data
    Shah, Abzer K. Pakkir
    Walter, Axel
    Ottosson, Filip
    Russo, Francesco
    Navarro-Diaz, Marcelo
    Boldt, Judith
    Kalinski, Jarmo-Charles J.
    Kontou, Eftychia Eva
    Elofson, James
    Polyzois, Alexandros
    Gonzalez-Marin, Carolina
    Farrell, Shane
    Aggerbeck, Marie R.
    Pruksatrakul, Thapanee
    Chan, Nathan
    Wang, Yunshu
    Poechhacker, Magdalena
    Brungs, Corinna
    Camara, Beatriz
    Caraballo-Rodriguez, Andres Mauricio
    Cumsille, Andres
    de Oliveira, Fernanda
    Duehrkop, Kai
    El Abiead, Yasin
    Geibel, Christian
    Graves, Lana G.
    Hansen, Martin
    Heuckeroth, Steffen
    Knoblauch, Simon
    Kostenko, Anastasiia
    Kuijpers, Mirte C. M.
    Mildau, Kevin
    Papadopoulos Lambidis, Stilianos
    Gomes, Paulo Wender Portal
    Schramm, Tilman
    Steuer-Lodd, Karoline
    Stincone, Paolo
    Tayyab, Sibgha
    Vitale, Giovanni Andrea
    Wagner, Berenike C.
    Xing, Shipei
    Yazzie, Marquis T.
    Zuffa, Simone
    de Kruijff, Martinus
    Beemelmanns, Christine
    Link, Hannes
    Mayer, Christoph
    van der Hooft, Justin J. J.
    Damiani, Tito
    Pluskal, Tomas
    NATURE PROTOCOLS, 2025, 20 (01) : 92 - 162
  • [7] MetMiner: A user-friendly pipeline for large-scale plant metabolomics data analysis
    Xiao Wang
    Shuang Liang
    Wenqi Yang
    Ke Yu
    Fei Liang
    Bing Zhao
    Xiang Zhu
    Chao Zhou
    Luis AJMur
    Jeremy ARoberts
    Junli Zhang
    Xuebin Zhang
    Journal of Integrative Plant Biology, 2024, 66 (11) : 2329 - 2345
  • [8] MetMiner: A user-friendly pipeline for large-scale plant metabolomics data analysis
    Wang, Xiao
    Liang, Shuang
    Yang, Wenqi
    Yu, Ke
    Liang, Fei
    Zhao, Bing
    Zhu, Xiang
    Zhou, Chao
    Mur, Luis A. J.
    Roberts, Jeremy A.
    Zhang, Junli
    Zhang, Xuebin
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2024, 66 (11) : 2329 - 2345
  • [9] Improved eukaryotic detection compatible with large-scale automated analysis of metagenomes
    Bazant, Wojtek
    Blevins, Ann S. S.
    Crouch, Kathryn
    Beiting, Daniel P. P.
    MICROBIOME, 2023, 11 (01)
  • [10] Improved eukaryotic detection compatible with large-scale automated analysis of metagenomes
    Wojtek Bazant
    Ann S. Blevins
    Kathryn Crouch
    Daniel P. Beiting
    Microbiome, 11