Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN)

被引:86
|
作者
Ahlawat, Savita [1 ]
Choudhary, Amit [2 ]
Nayyar, Anand [3 ]
Singh, Saurabh [4 ]
Yoon, Byungun [4 ]
机构
[1] Maharaja Surajmal Inst Technol, Dept Comp Sci & Engn, New Delhi 110058, India
[2] Maharaja Surajmal Inst, Dept Comp Sci, New Delhi 110058, India
[3] Duy Tan Univ, Grad Sch, Da Nang 550000, Vietnam
[4] Dongguk Univ, Dept Ind & Syst Engn, Seoul 04620, South Korea
关键词
convolutional neural networks; handwritten digit recognition; pre-processing; OCR; FEATURES; OPTIMIZATION; CLASSIFIER; EXTRACTION; ENSEMBLES; SEQUENCE; ONLINE;
D O I
10.3390/s20123344
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Traditional systems of handwriting recognition have relied on handcrafted features and a large amount of prior knowledge. Training an Optical character recognition (OCR) system based on these prerequisites is a challenging task. Research in the handwriting recognition field is focused around deep learning techniques and has achieved breakthrough performance in the last few years. Still, the rapid growth in the amount of handwritten data and the availability of massive processing power demands improvement in recognition accuracy and deserves further investigation. Convolutional neural networks (CNNs) are very effective in perceiving the structure of handwritten characters/words in ways that help in automatic extraction of distinct features and make CNN the most suitable approach for solving handwriting recognition problems. Our aim in the proposed work is to explore the various design options like number of layers, stride size, receptive field, kernel size, padding and dilution for CNN-based handwritten digit recognition. In addition, we aim to evaluate various SGD optimization algorithms in improving the performance of handwritten digit recognition. A network's recognition accuracy increases by incorporating ensemble architecture. Here, our objective is to achieve comparable accuracy by using a pure CNN architecture without ensemble architecture, as ensemble architectures introduce increased computational cost and high testing complexity. Thus, a CNN architecture is proposed in order to achieve accuracy even better than that of ensemble architectures, along with reduced operational complexity and cost. Moreover, we also present an appropriate combination of learning parameters in designing a CNN that leads us to reach a new absolute record in classifying MNIST handwritten digits. We carried out extensive experiments and achieved a recognition accuracy of 99.87% for a MNIST dataset.
引用
下载
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [21] Multi-channel handwritten digit recognition using neural networks
    Chi, ZR
    Lu, ZK
    Chan, FH
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 625 - 628
  • [22] Residual Neural Network Vs Local Binary Convolutional Neural Networks for Bilingual Handwritten Digit Recognition
    Al-wajih, Ebrahim
    Ghazali, Rozaida
    Hassim, Yana Mazwin Mohmad
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING (SCDM 2020), 2020, 978 : 25 - 34
  • [23] Handwritten Hangul recognition using deep convolutional neural networks
    Kim, In-Jung
    Xie, Xiaohui
    INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2015, 18 (01) : 1 - 13
  • [24] Handwritten Bangla Numeral Recognition using Convolutional Neural Networks
    Paul, Jaya
    Sarkar, Anasua
    2018 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS, MATERIALS ENGINEERING & NANO-TECHNOLOGY (IEMENTECH), 2018, : 64 - 67
  • [25] Handwritten Hangul recognition using deep convolutional neural networks
    In-Jung Kim
    Xiaohui Xie
    International Journal on Document Analysis and Recognition (IJDAR), 2015, 18 : 1 - 13
  • [26] BDNet: Bengali Handwritten Numeral Digit Recognition based on Densely connected Convolutional Neural Networks
    Sufian, Abu
    Ghosh, Anirudha
    Naskar, Avijit
    Sultana, Farhana
    Sil, Jaya
    Rahman, M. M. Hafizur
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (06) : 2610 - 2620
  • [27] Deep Convolutional Neural Network for Handwritten Bangla and English Digit Recognition
    Akbar, Md Ali
    Islam, Md Saiful
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021), 2021,
  • [28] FPGA Implementation of CNN for Handwritten Digit Recognition
    Xiao, Rui
    Shi, Junsheng
    Zhang, Chao
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1128 - 1133
  • [29] Ncfm: Accurate Handwritten Digits Recognition using Convolutional Neural Networks
    Yin, Yan
    Wu, JunMin
    Zheng, HuanXin
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 525 - 531
  • [30] Handwritten Tifinagh Characters Recognition Using Deep Convolutional Neural Networks
    Mohamed Benaddy
    Othmane El Meslouhi
    Youssef Es-saady
    Mustapha Kardouchi
    Sensing and Imaging, 2019, 20