CU-NET: TOWARDS CONTINUOUS MULTI-CLASS CONTOUR DETECTION FOR RETINAL LAYER SEGMENTATION IN OCT IMAGES

被引:2
|
作者
Bhattarai, Ashuta [1 ]
Kambhamettu, Chandra [1 ]
Jin, Jing [2 ]
机构
[1] Univ Delaware, Video Image Modeling & Synth VIMS Lab, Newark, DE 19716 USA
[2] Nemours Childrens Hosp, Newark, DE USA
关键词
Contour detection; optical coherence tomography; retinal layer segmentation; OPTICAL COHERENCE TOMOGRAPHY; AUTOMATIC SEGMENTATION; NETWORK;
D O I
10.1109/ICIP46576.2022.9897516
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent deep learning-based contour detection studies show high accuracy in single-class boundary detection problems. However, this performance does not translate well in a multi-class scenario where continuous contours are required. Our research presents CU-Net, a U-Net-based network with residual-net encoders which can produce accurate and uninterrupted contour lines for multiple classes. The critical factor behind this concept is our continuity module, containing an interpolation layer and a novel activation function that converts discrete signals into smooth contours. We find the application of our approach in medical imaging problems like retinal layer segmentation from optical coherence tomography (OCT) scans. We applied our method to an expert annotated OCT dataset of children with sickle-cell disease. To compare with benchmarks, we evaluated our network on DME and HC-MS datasets. We achieved an overall mean absolute distance of 6.48 +/- 2.04 mu M and 1.97 +/- 0.89 mu M, respectively 1.03 and 1.4 times less than the current state-of-the-art.
引用
收藏
页码:3833 / 3837
页数:5
相关论文
共 30 条
  • [11] Joint Segmentation of Multi-Class Hyper-Reflective Foci in Retinal Optical Coherence Tomography Images
    Yao, Chenpu
    Wang, Meng
    Zhu, Weifang
    Huang, Haifan
    Shi, Fei
    Chen, Zhongyue
    Wang, Lianyu
    Wang, Tingting
    Zhou, Yi
    Peng, Yuanyuan
    Zhu, Liangjiu
    Chen, Haoyu
    Chen, Xinjian
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (04) : 1349 - 1358
  • [12] MF-Net: Multi-Scale Information Fusion Network for CNV Segmentation in Retinal OCT Images
    Meng, Qingquan
    Wang, Lianyu
    Wang, Tingting
    Wang, Meng
    Zhu, Weifang
    Shi, Fei
    Chen, Zhongyue
    Chen, Xinjian
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [13] Anomaly Detection Based on Uncertainty of Retinal Layer Boundary Segmentation in OCT Images using Deep Learning
    Miyazaki, Sohei
    Shiba, Ryosuke
    Takeno, Naoki
    Kumagai, Yoshiki
    Sakashita, Yusuke
    Shibata, Naohisa
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [14] Nuclei Segmentation in Colon Histology Images by Using the Deep CNNs: A U-Net Based Multi-class Segmentation Analysis
    Yildiz, Serdar
    Memis, Abbas
    Varli, Songul
    2022 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO'22), 2022,
  • [15] Towards Automatic Glaucoma Assessment: An Encoder-decoder CNN for Retinal Layer Segmentation in Rodent OCT images
    del Amor, Rocio
    Morales, Sandra
    Colomer, Adrian
    Mossi, Jose M.
    Woldbye, David
    Klemp, Kristian
    Larsen, Michael
    Naranjo, Valery
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [16] RRI-Net: Classification of Multi-class Retinal Diseases with Deep Recurrent Residual Inception Network using OCT Scans
    Hassan, Bilal
    Qin, Shiyin
    Ahmed, Ramsha
    2020 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2020), 2020,
  • [17] A Multi-class Deep All-CNN for Detection of Diabetic Retinopathy Using Retinal Fundus Images
    Challa, Uday Kiran
    Yellamraju, Pavankumar
    Bhatt, Jignesh S.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT I, 2019, 11941 : 191 - 199
  • [18] Encoder Modified U-Net and Feature Pyramid Network for Multi-class Segmentation of Cardiac Magnetic Resonance Images
    Sharan, Taresh Sarvesh
    Tripathi, Sumit
    Sharma, Shiru
    Sharma, Neeraj
    IETE TECHNICAL REVIEW, 2022, 39 (05) : 1092 - 1104
  • [19] Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images
    Bokhorst, John-Melle
    Nagtegaal, Iris D.
    Fraggetta, Filippo
    Vatrano, Simona
    Mesker, Wilma
    Vieth, Michael
    van der Laak, Jeroen
    Ciompi, Francesco
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [20] Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images
    John-Melle Bokhorst
    Iris D. Nagtegaal
    Filippo Fraggetta
    Simona Vatrano
    Wilma Mesker
    Michael Vieth
    Jeroen van der Laak
    Francesco Ciompi
    Scientific Reports, 13