Estimation and Model Selection in Dirichlet Regression

被引:10
|
作者
Camargo, Andre P. [1 ]
Stern, Julio M. [1 ]
Lauretto, Marcelo S. [2 ]
机构
[1] Univ Sao Paulo, Inst Math & Stat, BR-05508 Sao Paulo, Brazil
[2] Univ Sao Paulo, Sch Arts Sci & Humanities, BR-05508 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Dirichlet regression; parameter estimation; model selection;
D O I
10.1063/1.3703637
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study Compositional Models based on Dirichlet Regression where, given a (vector) covariate x, one considers the response variable y = (y(1), ... , y(D)) to be a positive vector with a conditional Dirichlet distribution, y vertical bar x similar to D (alpha(1) (x) ... alpha(D)(x)). We introduce a new method for estimating the parameters of the Dirichlet Covariate Model when alpha(j)(x) is a linear model on x, and also propose a Bayesian model selection approach. We present some numerical results which suggest that our proposals are more stable and robust than traditional approaches.
引用
收藏
页码:206 / 213
页数:8
相关论文
共 50 条