Adaptive pruning threshold based convolutional neural network for object detection

被引:0
|
作者
Guo, Zhendong [1 ]
Li, Xiaohong [1 ]
Zhang, Kai [1 ]
Guo, Xiaoyong [1 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Elect Informat & Automat, 1038 Dagu Nanlu, Tianjin 300457, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; adaptive pruning threshold; channel pruning; layer pruning;
D O I
10.3233/JIFS-213002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, it is proposed that the redundancy in convolutional neural networks of object detection can be effectively removed via an adaptive pruning threshold method (APTCNN) which is associated with scaling factors in batch normalization layers. In this way, the channel pruning can be done iteratively with varying pruning threshold until the satisfactory performance is obtained. The method is also useful for identifying the unimportant convolutional layers. Therefore it can be applied for layer pruning. The experiments are conducted on three benchmark object detection datasets. APTCNN is verified for pruning the backbone network of object detectors YOLOv3 and YOLOv3-spp. It is shown that the importance of channels and layers are accurately ranked by the proposed adaptive threshold. For the channel pruning, our method reduces the size of YOLOv3 and YOLOv3-spp by 32x and 48x respectively, and accelerates 1.7x and 1.9x respectively. However, the accuracy suffers only 0.77% and 1.32% loss, respectively. As a result, the redundancy in the network architecture can be efficiently removed yielding a slimmed model that has lower computing operations, reduced size, and without compromising accuracy.
引用
收藏
页码:7821 / 7831
页数:11
相关论文
共 50 条
  • [31] Geometric property-based convolutional neural network for indoor object detection
    Ding, Xintao
    Li, Boquan
    Wang, Jinbao
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2021, 18 (01):
  • [32] Geometric property-based convolutional neural network for indoor object detection
    Ding, Xintao
    Li, Boquan
    Wang, Jinbao
    International Journal of Advanced Robotic Systems, 2021, 18 (01)
  • [33] Convolutional Feature Frequency Adaptive Fusion Object Detection Network
    Mao, Lin
    Li, Xuemeng
    Yang, Dawei
    Zhang, Rubo
    NEURAL PROCESSING LETTERS, 2021, 53 (05) : 3545 - 3560
  • [34] Lossless Reconstruction of Convolutional Neural Network for Channel-Based Network Pruning
    Lee, Donghyeon
    Lee, Eunho
    Hwang, Youngbae
    SENSORS, 2023, 23 (04)
  • [35] Convolutional Feature Frequency Adaptive Fusion Object Detection Network
    Lin Mao
    Xuemeng Li
    Dawei Yang
    Rubo Zhang
    Neural Processing Letters, 2021, 53 : 3545 - 3560
  • [36] Pruning Convolutional Neural Network with Distinctiveness Approach
    Li, Wenrui
    Plested, Jo
    NEURAL INFORMATION PROCESSING, ICONIP 2019, PT V, 2019, 1143 : 448 - 455
  • [37] Overview of Deep Convolutional Neural Network Pruning
    Li, Guang
    Liu, Fang
    Xia, Yuping
    2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584
  • [38] Rethinking the Pruning Criteria for Convolutional Neural Network
    Huang, Zhongzhan
    Shao, Wenqi
    Wang, Xinjiang
    Lin, Liang
    Luo, Ping
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [39] Hypergraph attentional convolutional neural network for salient object detection
    Liu, Ze-yu
    Liu, Jian-wei
    VISUAL COMPUTER, 2023, 39 (07): : 2881 - 2907
  • [40] SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection
    Shengfeng He
    Rynson W. H. Lau
    Wenxi Liu
    Zhe Huang
    Qingxiong Yang
    International Journal of Computer Vision, 2015, 115 : 330 - 344