Removing multiple outliers and single-crystal artefacts from X-ray diffraction computed tomography data

被引:39
|
作者
Vamvakeros, Antonios [1 ,2 ]
Jacques, Simon D. M. [1 ,2 ,3 ]
Di Michiel, Marco [4 ]
Middelkoop, Vesna [5 ]
Egan, Christopher K. [3 ]
Cernik, Robert J. [3 ]
Beale, Andrew M. [1 ,2 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] UK Catalysis Hub, Didcot, Oxon, England
[3] Univ Manchester, Sch Mat, Manchester M13 9PL, England
[4] European Synchrotron, ESRF, F-38000 Grenoble, France
[5] VITO NV, Flemish Inst Technol Res, Mol, Belgium
来源
基金
英国工程与自然科学研究理事会;
关键词
XRD-CT; diffraction tomography; powder X-ray diffraction; diffraction images; ACTIVE PHASE EVOLUTION; TRIMMED MEAN FILTER; MEDIAN FILTERS; SCANNING TOMOGRAPHY; POWDER DIFFRACTION; CATALYST BODIES; MICROTOMOGRAPHY; BONE;
D O I
10.1107/S1600576715020701
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper reports a simple but effective filtering approach to deal with single-crystal artefacts in X-ray diffraction computed tomography (XRD-CT). In XRD-CT, large crystallites can produce spots on top of the powder diffraction rings, which, after azimuthal integration and tomographic reconstruction, lead to line/streak artefacts in the tomograms. In the simple approach presented here, the polar transform is taken of collected two-dimensional diffraction patterns followed by directional median/mean filtering prior to integration. Reconstruction of one-dimensional diffraction projection data sets treated in such a way leads to a very significant improvement in reconstructed image quality for systems that exhibit powder spottiness arising from large crystallites. This approach is not computationally heavy which is an important consideration with big data sets such as is the case with XRD-CT. The method should have application to two-dimensional X-ray diffraction data in general where such spottiness arises.
引用
收藏
页码:1943 / 1955
页数:13
相关论文
共 50 条
  • [31] The crystal structure of gypsum-II determined by single-crystal synchrotron X-ray diffraction data
    Nazzareni, Sabrina
    Comodi, Paola
    Bindi, Luca
    Dubrovinsky, Leonid
    AMERICAN MINERALOGIST, 2010, 95 (04) : 655 - 658
  • [32] Fine Structure of Diffraction Losses in Single-Crystal X-Ray Lenses
    Klimova, N. B.
    Barannikov, A. A.
    Sorokovikov, M. N.
    Zverev, D. A.
    Yunkin, V. A.
    Prosekov, P. A.
    Seregin, A. Yu.
    Blagov, A. E.
    Snigirev, A. A.
    CRYSTALLOGRAPHY REPORTS, 2022, 67 (06) : 838 - 844
  • [33] Multiscale structure of LaAlO3 from single-crystal X-ray diffraction
    Nishioka, Takashi
    Hayashi, Mibuki
    Kasai, Hidetaka
    Nishibori, Eiji
    Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2024, 80 (Pt 4) : 275 - 280
  • [34] SINGLE-CRYSTAL X-RAY DIFFRACTION STUDY OF BETA-FLUORINE
    JORDAN, TH
    STREIB, WE
    LIPSCOMB, WN
    JOURNAL OF CHEMICAL PHYSICS, 1964, 41 (03): : 760 - +
  • [35] QUANTITATIVE X-RAY PHOTOELECTRON DIFFRACTION STUDIES OF SINGLE-CRYSTAL SILICATES
    EVANS, S
    RAFTERY, E
    SOLID STATE COMMUNICATIONS, 1980, 33 (12) : 1213 - 1215
  • [36] Characterization of Single-Crystal Turbine Blades by X-Ray Diffraction Methods
    Bogdanowicz, Wlodzimierz
    Albrecht, Robert
    Onyszko, Arkadiusz
    Sieniawski, Jan
    APPLIED CRYSTALLOGRAPHY XXII, 2013, 203-204 : 63 - +
  • [37] Grazing diffraction of X-ray radiation in a planar single-crystal waveguide
    Golentus I.E.
    Gaevskii A.Y.
    Journal of Surface Investigation, 2014, 8 (03): : 462 - 469
  • [38] X-RAY ABSORPTION AT LAUE DIFFRACTION IN AN ELASTICALLY DISTORTED SINGLE-CRYSTAL
    DATSENKO, LI
    KISLOVSKII, EN
    VASILKOVSKII, AS
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1974, 23 (01): : 215 - 221
  • [39] High pressure single-crystal synchrotron X-ray diffraction technique
    Li Xiao-Dong
    Li Hui
    Li Peng-Shan
    ACTA PHYSICA SINICA, 2017, 66 (03)
  • [40] Fine Structure of Diffraction Losses in Single-Crystal X-Ray Lenses
    N. B. Klimova
    A. A. Barannikov
    M. N. Sorokovikov
    D. A. Zverev
    V. A. Yunkin
    P. A. Prosekov
    A. Yu. Seregin
    A. E. Blagov
    A. A. Snigirev
    Crystallography Reports, 2022, 67 : 838 - 844