Segregation analysis of a complex quantitative trait: Approaches for identifying influential data points

被引:9
|
作者
Igo, Robert P., Jr.
Chapman, Nicola H.
Wijsman, Ellen M.
机构
[1] Univ Washington, Dept Med, Div Med Genet, Seattle, WA 98195 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[3] Case Western Reserve Univ, Dept Epidemiol & Biostat, Cleveland, OH 44106 USA
关键词
extreme values; outliers; MCMC; oligogenic; segregation analysis; complex traits;
D O I
10.1159/000093085
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background/Aims: Complex traits pose a particular challenge to standard methods for segregation analysis (SA), and for such traits it is difficult to assess the ability of complex SA (CSA) to approximate the true mode of inheritance. Here we use an oligogenic Bayesian Markov chain Monte Carlo method for SA (OSA) to verify results from a single-locus likelihood-based CSA for data on a quantitative measure of reading ability. Methods: We compared the profile likelihood from CSA, maximized over the trait allele frequency, to the posterior distribution of genotype effects from OSA to explore differences in the overall parameter estimates from SA on the original phenotype data and the same data Win-sorized to reduce the potential influence of three outlying data points. Results: Bayesian OSA revealed two modes of inheritance, one of which coincided with the QTL model from CSA. Winsorizing abolished the model originally estimated by CSA; both CSA and OSA identified only the second OSA model. Conclusion: Differences between the results from the two methods alerted us to the presence of influential data points, and identified the QTL model best supported by the data. Thus, the Bayesian OSA proved a valuable tool for assessing and verifying inheritance models from CSA.
引用
收藏
页码:80 / 86
页数:7
相关论文
共 50 条
  • [41] Single-nucleotide polymorphism versus microsatellite markers in a combined linkage and segregation analysis of a quantitative trait
    E Warwick Daw
    Simon C Heath
    Yue Lu
    BMC Genetics, 6
  • [42] QUANTITATIVE TRAIT LOCUS ANALYSIS IN YEAST: IDENTIFYING CANDIDATE THERAPEUTIC TARGETS FOR HUNTINGTON'S DISEASE
    Alfonso-Nunez, Monica
    Louis, Edward J.
    Giorgini, Flaviano
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2018, 89 : A17 - A17
  • [43] Complex systems approaches for Earth system data analysis
    Boers, Niklas
    Kurths, Juergen
    Marwan, Norbert
    JOURNAL OF PHYSICS-COMPLEXITY, 2021, 2 (01):
  • [44] Three-Dimensional Morphometrics for Quantitative Trait Locus Analysis: Tackling Complex Questions with Complex Phenotypes
    Jamniczky, Heather A.
    Campeau, Stephen
    Barry, Tegan N.
    Skelton, Jase
    Rogers, Sean M.
    EVOLUTIONARY BIOLOGY, 2015, 42 (03) : 260 - 271
  • [45] Three-Dimensional Morphometrics for Quantitative Trait Locus Analysis: Tackling Complex Questions with Complex Phenotypes
    Heather A. Jamniczky
    Stephen Campeau
    Tegan N. Barry
    Jase Skelton
    Sean M. Rogers
    Evolutionary Biology, 2015, 42 : 260 - 271
  • [46] OSCA: a tool for omic-data-based complex trait analysis
    Futao Zhang
    Wenhan Chen
    Zhihong Zhu
    Qian Zhang
    Marta F. Nabais
    Ting Qi
    Ian J. Deary
    Naomi R. Wray
    Peter M. Visscher
    Allan F. McRae
    Jian Yang
    Genome Biology, 20
  • [47] OSCA: a tool for omic-data-based complex trait analysis
    Zhang, Futao
    Chen, Wenhan
    Zhu, Zhihong
    Zhang, Qian
    Nabais, Marta F.
    Qi, Ting
    Deary, Ian J.
    Wray, Naomi R.
    Visscher, Peter M.
    McRae, Allan F.
    Yang, Jian
    GENOME BIOLOGY, 2019, 20 (1)
  • [48] Quantitative analysis of textual data: Differentiation and coordination of two approaches
    Higuchi, K
    SOCIOLOGICAL THEORY AND METHODS, 2004, 19 (01) : 101 - 115
  • [49] Quantitative approaches to the analysis of stable isotope food web data
    Schmidt, Stephanie N.
    Olden, Julian D.
    Solomon, Christopher T.
    Vander Zanden, M. Jake
    ECOLOGY, 2007, 88 (11) : 2793 - 2802
  • [50] Identifying Complex Causal Dependencies in Configurational Data with Coincidence Analysis
    Baumgartner, Michael
    Thiem, Alrik
    R JOURNAL, 2015, 7 (01): : 176 - 184