Mixed-effects modeling with crossed random effects for subjects and items

被引:5684
|
作者
Baayen, R. H. [1 ]
Davidson, D. J. [2 ]
Bates, D. M. [3 ]
机构
[1] Univ Alberta, Dept Linguist, Edmonton, AB T6G 2E5, Canada
[2] Max Planck Inst Psycholinguist, NL-6500 AH Nijmegen, Netherlands
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
关键词
Mixed-effects models; Crossed random effects; Quasi-F; By-item; By-subject;
D O I
10.1016/j.jml.2007.12.005
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
This paper provides an introduction to mixed-effects models for the analysis of repeated measurement data with subjects and items as crossed random effects. A worked-out example of how to use recent software for mixed-effects modeling is provided. Simulation studies illustrate the advantages offered by mixed-effects analyses compared to traditional analyses based on quasi-F tests, by-subjects analyses, combined by-subjects and by-items analyses, and random regression. Applications and possibilities across a range of domains of inquiry are discussed. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:390 / 412
页数:23
相关论文
共 50 条
  • [31] Assessing robustness of designs for random effects parameters for nonlinear mixed-effects models
    Duffull, Stephen B.
    Hooker, Andrew C.
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2017, 44 (06) : 611 - 616
  • [32] Testing random effects in linear mixed-effects models with serially correlated errors
    Drikvandi, Reza
    Noorian, Sajad
    BIOMETRICAL JOURNAL, 2019, 61 (04) : 802 - 812
  • [33] Selection Strategy for Covariance Structure of Random Effects in Linear Mixed-effects Models
    Zhang, Xinyu
    Liang, Hua
    Liu, Anna
    Ruppert, David
    Zou, Guohua
    SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (01) : 275 - 291
  • [34] Assessing robustness of designs for random effects parameters for nonlinear mixed-effects models
    Stephen B. Duffull
    Andrew C. Hooker
    Journal of Pharmacokinetics and Pharmacodynamics, 2017, 44 : 611 - 616
  • [35] Benefits of Bayesian Model Averaging for Mixed-Effects Modeling
    Heck D.W.
    Bockting F.
    Computational Brain & Behavior, 2023, 6 (1) : 35 - 49
  • [36] The Need for Mixed-Effects Modeling with Population Dichotomous Data
    Ikuko Yano
    Stuart L. Beal
    Lewis B. Sheiner
    Journal of Pharmacokinetics and Pharmacodynamics, 2001, 28 (4) : 109 - 128
  • [37] Nonlinearity detection: Advantages of nonlinear mixed-effects modeling
    Jonsson E.N.
    Karlsson M.O.
    Wade J.R.
    AAPS PharmSci, 2 (3): : 114
  • [38] Nonlinearity detection: Advantages of nonlinear mixed-effects modeling
    Jonsson, EN
    Wade, JR
    Karlsson, MO
    AAPS PHARMSCI, 2000, 2 (03): : art. no. - 32
  • [39] The need for mixed-effects modeling with population dichotomous data
    Yano, I
    Beal, SL
    Sheiner, LB
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2001, 28 (04) : 389 - 412
  • [40] Estimating anatomical trajectories with Bayesian mixed-effects modeling
    Ziegler, G.
    Penny, W. D.
    Ridgway, G. R.
    Ourselin, S.
    Friston, K. J.
    NEUROIMAGE, 2015, 121 : 51 - 68