Some classifications of Weingarten translation hypersurfaces in Euclidean space

被引:0
|
作者
Yang, Dan [1 ]
机构
[1] Liaoning Univ, Sch Math, Shenyang 110036, Liaoning, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Translation hyersurfaces; Mean curvature; linear Weingarten; Gauss-Kronecker curvature; CURVATURE; FORMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:107 / 115
页数:9
相关论文
共 50 条
  • [41] Complete linear Weingarten hypersurfaces immersed in the hyperbolic space
    de Lima, Henrique Fernandes
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (02) : 415 - 423
  • [42] A LIOUVILLE-TYPE THEOREM FOR SOME WEINGARTEN HYPERSURFACES
    Sakaguchi, Shigeru
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (04): : 887 - 895
  • [43] A Class of Weingarten Surfaces in Euclidean 3-Space
    Fu, Yu
    Li, Lan
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [44] Translation Hypersurfaces in Euclidean 4-Spaces
    Akkilinc, Ipek
    Yuce, Salim
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2022, 54 (12): : 44 - 53
  • [45] On Weingarten surfaces in Euclidean and Lorentzian 3-space
    Guilfoyle, Brendan
    Klingenberg, Wilhelm
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2010, 28 (04) : 454 - 468
  • [46] Weingarten quadric surfaces in a Euclidean 3-space
    Kim, Min Hee
    Yoon, Dae Won
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (03) : 479 - 485
  • [47] A Characterization of Separable Hypersurfaces in Euclidean Space
    D. Chen
    C. X. Wang
    X. S. Wang
    Mathematical Notes, 2023, 113 : 339 - 344
  • [48] Tangent Bundle of the Hypersurfaces in a Euclidean Space
    Deshmukh, Sharief
    Al-Shaikh, Suha B.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2016, 11 (01): : 13 - 26
  • [49] Brownian functionals on hypersurfaces in Euclidean space
    Kinateder, KKJ
    McDonald, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1815 - 1822
  • [50] A NOTE ON HYPERSURFACES IN A EUCLIDEAN-SPACE
    DESHMUKH, S
    GEOMETRIAE DEDICATA, 1990, 34 (01) : 101 - 103