On a functional limit result for increments of a fractional Brownian motion

被引:13
|
作者
Wang, WS [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310028, Peoples R China
[2] Hangzhou Teachers Coll, Dept Math, Hangzhou 310012, Peoples R China
关键词
modulus of continuity; fractional Brownian motion; law of the iterated logarithm; increment;
D O I
10.1023/A:1013829802476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Large deviation results for Gaussian processes are presented. As an application, we obtain a functional limit result for small increments of a fractional Brownian motion. Levy's modulus of continuity for a fractional Brownian motion is obtained as a special case.
引用
收藏
页码:153 / 170
页数:18
相关论文
共 50 条
  • [41] SINGULAR MEASURES AND INCREMENTS OF BROWNIAN MOTION
    KAUFMAN, RP
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A397 - A397
  • [42] The large increments of a multifractional Brownian motion
    Lin, ZY
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, VOL 3, 2003, : 107 - 121
  • [43] LARGE INCREMENTS OF BROWNIAN-MOTION
    KAUFMAN, R
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1975, 56 (JAN) : 139 - 145
  • [44] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    [J]. ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [45] A CONDITIONAL LIMIT LAW RESULT ON THE LOCATION OF THE MAXIMUM OF BROWNIAN-MOTION
    MATHEW, G
    MCCORMICK, WP
    [J]. STATISTICS & PROBABILITY LETTERS, 1992, 13 (03) : 199 - 202
  • [46] Quasi Sure Large Deviation for Increments of Fractional Brownian Motion in H¨older Norm
    Jie XU
    Yun Min ZHU
    Ji Cheng LIU
    [J]. Acta Mathematica Sinica,English Series, 2015, (06) : 913 - 920
  • [47] Interpolation of 2-D fractional Brownian motion using first order increments
    Han, ZJ
    Denney, TS
    [J]. 1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 3, 1998, : 222 - 226
  • [48] Quasi sure large deviation for increments of fractional Brownian motion in Hölder norm
    Jie Xu
    Yun Min Zhu
    Ji Cheng Liu
    [J]. Acta Mathematica Sinica, English Series, 2015, 31 : 913 - 920
  • [49] Quasi Sure Large Deviation for Increments of Fractional Brownian Motion in H¨older Norm
    Jie XU
    Yun Min ZHU
    Ji Cheng LIU
    [J]. Acta Mathematica Sinica., 2015, 31 (06) - 920
  • [50] Onsager-Machlup functional for the fractional Brownian motion
    Sílvia Moret
    David Nualart
    [J]. Probability Theory and Related Fields, 2002, 124 : 227 - 260