Identifying Risks of the Internet Finance Platforms Using Multi-Source Text Data

被引:0
|
作者
Zhang, Donglei [1 ,4 ]
Bai, Jie [1 ,2 ]
Wang, Lei [1 ,2 ]
He, Min [3 ]
Luo, Yin [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China
[2] Shenzhen Artificial Intelligence & Data Sci Inst, Shenzhen, Peoples R China
[3] Natl Comp Network, Emergency Response Tech Team, Coordinat Ctr China, Beijing, Peoples R China
[4] Beijing Wenge Technol Co Ltd, Beijing 100080, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Internet Finance Platforms; Risk Identification; Risk Index System; Text Mining;
D O I
10.1109/isi.2019.8823525
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the explosion of the Internet Finance Platforms, identifying the risks of these platforms is of growing significance, which can help discover problematic platforms in time and ensure the healthy development of the Internet finance industry. In this paper, we design a risk index system to measure the quantitative risk of the Internet finance platforms, and propose a deep neural network based model, CBiGRU-RI, to identify the risks of the platforms using multi-source text data. We conducted comparative experiments with various baseline models on real-world data. The experimental results show that our proposed model can identify the risks of platforms more effectively than the baseline methods.
引用
收藏
页码:185 / 187
页数:3
相关论文
共 50 条
  • [41] Multi-source data fusion for economic data analysis
    Li, Menggang
    Wang, Fang
    Jia, Xiaojun
    Li, Wenrui
    Li, Ting
    Rui, Guangwei
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10): : 4729 - 4739
  • [42] Multi-source data fusion for economic data analysis
    Menggang Li
    Fang Wang
    Xiaojun Jia
    Wenrui Li
    Ting Li
    Guangwei Rui
    Neural Computing and Applications, 2021, 33 : 4729 - 4739
  • [43] A Systematic Approach for Building Change Detection using Multi-Source Data
    Ozcan, Abdullah H.
    Unsalan, Cem
    Reinartz, Peter
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 477 - 480
  • [45] Mapping Himalayan leucogranites by machine learning using multi-source data
    Wang Z.
    Zuo R.
    Earth Science Frontiers, 2023, 30 (05) : 216 - 226
  • [46] Opportunistic Discovery of Personal Places Using Multi-Source Sensor Data
    Vhaduri, Sudip
    Poellabauer, Christian
    IEEE TRANSACTIONS ON BIG DATA, 2021, 7 (02) : 383 - 396
  • [47] Accurate Evaluation of Regional Soil Salinization Using Multi-Source Data
    Wu Ya-kun
    Liu Guang-ming
    Su Li-tan
    Yang Jin-song
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38 (11) : 3528 - 3533
  • [48] A Big Data Architecture for Traffic Forecasting Using Multi-Source Information
    Petalas, Yannis G.
    Ammari, Ahmad
    Georgakis, Panos
    Nwagboso, Chris
    ALGORITHMIC ASPECTS OF CLOUD COMPUTING, ALGOCLOUD 2016, 2017, 10230 : 65 - 83
  • [49] Multi-source data fusion using deep learning for smart refrigerators
    Zhang, Weishan
    Zhang, Yuanjie
    Zhai, Jia
    Zhao, Dehai
    Xu, Liang
    Zhou, Jiehan
    Li, Zhongwei
    Yang, Su
    COMPUTERS IN INDUSTRY, 2018, 95 : 15 - 21
  • [50] Predicting Public Bicycle Rental Number using Multi-source Data
    Lin, Fei
    Wang, Shihua
    Jiang, Jian
    Fan, Weidi
    Sun, Yong
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1502 - 1509