Catalytic hydrogen-oxygen reaction in anode and cathode for cold start of proton exchange membrane fuel cell

被引:31
|
作者
Luo, Yueqi [1 ]
Jia, Bin [2 ]
Jiao, Kui [2 ]
Du, Qing [2 ]
Yin, Yan [2 ]
Wang, Huizhi [3 ]
Xuan, Jin [3 ]
机构
[1] Shanghai Jiao Tong Univ, Key Lab Power Machinery & Engn, Minist Educ, Shanghai 200240, Peoples R China
[2] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
[3] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
中国国家自然科学基金;
关键词
Proton exchange membrane (PEM) fuel cell stack; Cold start; Maximum power; Constant power; Hydrogen-oxygen catalytic reaction; SUB-FREEZING TEMPERATURES; BEHAVIOR; DEGRADATION; PERFORMANCE; PARAMETERS; OPERATION; MODEL; LAYER; WATER; POWER;
D O I
10.1016/j.ijhydene.2015.06.094
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fuel cell vehicles (FCVs) have shown the potential of commercialization in recent years. The concerns on the startup ability of proton exchange membrane (PEM) fuel cell stack from subfreezing temperature have risen. The hydrogen oxygen catalytic reactions assisted cold start method is developed and analyzed in this study. It utilizes a small amount of hydrogen/ air mixture to react at low temperature in the catalyst layers (CLs) through platinum catalyst. The interactions between this assisted method and various startup modes are the major issue to be discussed. Anode catalytic reaction with air mole fraction higher than 16% is effective to assist a 30-cell stack starting from 25 degrees C within 13 s in maximum power mode. However, cathode catalytic reaction cannot sustain a successful startup. The anode humidification effect plays an important role to reduce the stack resistance, and to increase the inherent heat generation rate. In maximum power mode and high current density constant power mode, anode catalytic reaction assisted cold start can be achieved within 10-20 s from 40 degrees C. Anode air mole fraction must be higher than 18% to ensure the successful cold start in these two modes. For constant power mode, the operating power must be lower than 12W per cell. In constant current mode, when the current density is low, there would be less demand for anode catalytic reaction to achieve successful startup from 40 degrees C, indicating that lower current density operations have better survivability in low temperature. Nevertheless, much longer start duration is required for lower operating current. Generally, high current density operating mode with high air mole fraction is a more practical and energy efficient cold start strategy, as the startup time can be reduced significantly. Cold start from about 20 degrees C without ice accumulation is feasible using this method, which may have reduced concern about degradation. Increasing the volume of CL (porosity and thickness) also helps reduce the ice formation. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10293 / 10307
页数:15
相关论文
共 50 条
  • [21] Characteristics of proton exchange membrane fuel cells cold start with silica in cathode catalyst layers
    Miao, Zhili
    Yu, Hongmei
    Song, Wei
    Hao, Lixing
    Shao, Zhigang
    Shen, Qiang
    Hou, Junbo
    Yi, Baolian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (11) : 5552 - 5557
  • [22] HYDROGEN-OXYGEN ION-EXCHANGE MEMBRANE FUEL CELLS
    FOULKES, FR
    GRAYDON, WF
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1969, 47 (02): : 171 - &
  • [23] A Review on Cold Start of Proton Exchange Membrane Fuel Cells
    Wan, Zhongmin
    Chang, Huawei
    Shu, Shuiming
    Wang, Yongxiang
    Tang, Haolin
    ENERGIES, 2014, 7 (05): : 3179 - 3203
  • [24] Cold start characteristics of proton exchange membrane fuel cells
    Jiao, Kui
    Alaefour, Ibrahim E.
    Karimi, Gholamreza
    Li, Xianguo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (18) : 11832 - 11845
  • [25] Study on Control Strategy for Anode and Cathode Pressures in Proton Exchange Membrane Fuel Cell
    Chang J.
    Wang X.
    Fang J.
    Xie D.
    Wang C.
    Qiche Gongcheng/Automotive Engineering, 2021, 43 (10): : 1466 - 1471
  • [26] A cold start mode of proton exchange membrane fuel cell based on current control
    Min, Haitao
    Cao, Qiming
    Yu, Yunbin
    Zhang, Zhaopu
    Lin, Jiabo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (08) : 5507 - 5520
  • [27] Comparison of self cold start strategies of automotive Proton Exchange Membrane Fuel Cell
    Amamou, A.
    Boulon, L.
    Kelouwani, S.
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2018, : 904 - 908
  • [28] Investigation of mechanical vibration effect on proton exchange membrane fuel cell cold start
    Xie, Xu
    Zhu, Mengqian
    Wu, Siyuan
    Tongsh, Chasen
    Sun, Xiaoyan
    Wang, Bowen
    Park, Jae Wan
    Jiao, Kui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (28) : 14528 - 14538
  • [29] Modeling the performance of hydrogen-oxygen unitized regenerative proton exchange membrane fuel cells for energy storage
    Guarnieri, Massimo
    Alotto, Piergiorgio
    Moro, Federico
    JOURNAL OF POWER SOURCES, 2015, 297 : 23 - 32
  • [30] Cold start optimization of the proton-exchange membrane fuel cell by penetrating holes in the cathode micro-diffusion layer
    Wang, Peng
    Li, Linjun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (86) : 36650 - 36658