The ginzburg-landau equation in the Heisenberg group

被引:7
|
作者
Birindelli, Isabeau [1 ]
Valdinoci, Enrico [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
subelliptic operators and minimal surfaces on the Heisenberg group; Allen-Cahn-Ginzburg-Landau-type functionals; geometric properties of minimizers;
D O I
10.1142/S0219199708002946
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a functional related with phase transition models in the Heisenberg group framework. We prove that level sets of local minimizers satisfy some density estimates, that is, they behave as "codimension one" sets. We thus deduce a uniform convergence property of these level sets to interfaces with minimal area. These results are then applied in the construction of (quasi) periodic, plane-like minimizers, i.e. minimizers of our functional whose level sets are contained in a spacial slab of universal size in a prescribed direction. As a limiting case, we obtain the existence of hypersurfaces contained in such a slab which minimize the surface area with respect to a given periodic metric.
引用
收藏
页码:671 / 719
页数:49
相关论文
共 50 条
  • [21] A bifurcation analysis for the Ginzburg-Landau equation
    Comte, M
    Mironescu, P
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 144 (04) : 301 - 311
  • [22] DIFFUSIVE REPAIR FOR THE GINZBURG-LANDAU EQUATION
    COLLET, P
    ECKMANN, JP
    EPSTEIN, H
    HELVETICA PHYSICA ACTA, 1992, 65 (01): : 56 - 92
  • [23] THE GINZBURG-LANDAU EQUATION FOR INTERFACIAL INSTABILITIES
    PIERCE, R
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (11): : 2486 - 2494
  • [24] POTENTIAL FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    GRAHAM, R
    TEL, T
    EUROPHYSICS LETTERS, 1990, 13 (08): : 715 - 720
  • [25] TRANSITIONS TO CHAOS IN THE GINZBURG-LANDAU EQUATION
    MOON, HT
    HUERRE, P
    REDEKOPP, LG
    PHYSICA D, 1983, 7 (1-3): : 135 - 150
  • [26] Remarks on an Equation of the Ginzburg-Landau Type
    Wang, Bei
    FILOMAT, 2019, 33 (18) : 5913 - 5917
  • [27] Dynamic bifurcation of the Ginzburg-Landau equation
    Ma, T
    Park, J
    Wang, SH
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2004, 3 (04): : 620 - 635
  • [28] Lq solutions to the Ginzburg-Landau equation
    Gutiérrez, S
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 307 - 309
  • [29] Optical solitons with differential group delay for complex Ginzburg-Landau equation
    Yildirim, Yakup
    Biswas, Anjan
    Jawad, Anwar Ja'afar Mohamad
    Ekici, Mehmet
    Zhou, Qin
    Alzahrani, Abdullah Kamis
    Belic, Milivoj R.
    RESULTS IN PHYSICS, 2020, 16
  • [30] Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions
    Bethuel, F
    Brezis, H
    Orlandi, G
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (02) : 432 - 520