Linear maps that preserve commuting pairs of matrices over general Boolean algebra

被引:1
|
作者
Song, SZ [1 ]
Kang, KT [1 ]
机构
[1] Cheju Natl Univ, Dept Math, Cheju 690756, South Korea
关键词
linear operator; constituent; canonical form; commuting pair of matrices;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the set of commuting pairs of matrices and their preservers over binary Boolean algebra, chain semiring and general Boolean algebra. We characterize those linear operators that preserve the set of commuting pairs of matrices over a general Boolean algebra and a chain semiring.
引用
收藏
页码:77 / 86
页数:10
相关论文
共 50 条
  • [21] Biderivations and linear commuting maps on the planar Galilean conformal algebra
    Chi, Lili
    Sun, Jiancai
    Yang, Hengyun
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (08): : 1606 - 1618
  • [22] Commuting maps over the ring of strictly upper triangular matrices
    Bounds, Jordan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 507 : 132 - 136
  • [23] Biderivations And Linear Commuting Maps on the Schrodinger-Virasoro Lie Algebra
    Wang, Dengyin
    Yu, Xiaoxiang
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (06) : 2166 - 2173
  • [24] LINEAR OPERATORS THAT PRESERVE PERIMETERS OF MATRICES OVER SEMIRINGS
    Song, Seok-Zun
    Kang, Kyung-Tae
    Beasley, LeRoy B.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (01) : 113 - 123
  • [25] A note on classical adjoint commuting linear maps of tensor products of matrices
    Chooi, Wai Leong
    Kwa, Kiam Heong
    Lau, Jinting
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (04): : 745 - 766
  • [26] Commuting maps on invertible triangular matrices over F2
    Chooi, Wai Leong
    Kwa, Kiam Heong
    Tan, Li Yin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 583 : 77 - 101
  • [27] Linear maps on matrix algebra Jordan derivable at involutory matrices
    Zhou, Jinming
    Wang, Dengyin
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (07): : 913 - 917
  • [28] Skew-symmetric biderivations and linear commuting maps on the algebra SW(b)
    Liu, Yan
    Ma, Yao
    Chen, Liangyun
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (05) : 1755 - 1769
  • [29] Linear bijective maps preserving invertibility on pairs of similar matrices
    Costara, Constantin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 708 : 585 - 593
  • [30] Bijective linear maps on semimodules spanned by Boolean matrices of fixed rank
    Lim, Ming-Huat
    Tan, Sin-Chee
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (07) : 1365 - 1373