Schrodinger operators with fairly arbitrary spectral features

被引:0
|
作者
Krishna, M
Sunder, VS
机构
[1] Institute of Mathematical Sciences
关键词
D O I
10.1142/S0129055X97000129
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown, using methods of inverse-spectral theory, that there exist Schrodinger operators on the line with fairly general spectral features. Thus, for instance, it follows from the main theorem, that if Sigma is any perfect subset of (-infinity,0], then there exist potentials q(j),j = 1,2 such that the associated Schrodinger operators H-j are self-adjoint and satisfy: sigma(H-j) = Sigma boolean OR, [0, infinity), sigma(ac)(H-j) [0, infinity), sigma(pp)(H-1) = sigma(sc)(H-2) = Sigma. The main result also implies the existence of states with interesting transport properties.
引用
收藏
页码:343 / 360
页数:18
相关论文
共 50 条
  • [31] Extremal spectral gaps for periodic Schrodinger operators
    Kao, Chiu-Yen
    Osting, Braxton
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [32] Spectral properties of Schrodinger operators on decorated graphs
    Brüning, J
    Geiler, VA
    Lobanov, IS
    MATHEMATICAL NOTES, 2005, 77 (5-6) : 858 - 861
  • [33] Spectral Properties of Schrodinger Operators on Decorated Graphs
    J. Bruning
    V. A. Geiler
    I. S. Lobanov
    Mathematical Notes, 2005, 77 : 858 - 861
  • [34] Spectral Properties of Schrodinger Operators on Perturbed Lattices
    Ando, Kazunori
    Isozaki, Hiroshi
    Morioka, Hisashi
    ANNALES HENRI POINCARE, 2016, 17 (08): : 2103 - 2171
  • [35] Some spectral equivalences between Schrodinger operators
    Dunning, C.
    Hibberd, K. E.
    Links, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (31)
  • [36] Spectral gaps of Schrodinger operators and diffusion operators on abstract Wiener spaces
    Gong, Fu-Zhou
    Liu, Yong
    Liu, Yuan
    Luo, De-Jun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (09) : 5639 - 5675
  • [37] ABSENCE OF LOCALIZATION IN SCHRODINGER OPERATORS WITH ARBITRARY DETERMINISTIC POTENTIAL SEQUENCES
    Iguchi, Kazumoto
    MODERN PHYSICS LETTERS B, 1994, 8 (01): : 29 - 40
  • [38] Spectral analysis of the impulsive quadratic pencil of Schrodinger operators with spectral singularities
    Bairamov, E.
    Aygar, Y.
    Cebesoy, S.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (03) : 430 - 444
  • [39] Spectral theory and spectral gaps for periodic Schrodinger operators on product graphs
    Carlson, R
    WAVES IN RANDOM MEDIA, 2004, 14 (01): : S29 - S45
  • [40] On Some Sharp Spectral Inequalities for Schrodinger Operators on Semiaxis
    Exner, Pavel
    Laptev, Ari
    Usman, Muhammad
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (02) : 531 - 541