CONVERGENCE OF THE LARGEST SINGULAR VALUE OF A POLYNOMIAL IN INDEPENDENT WIGNER MATRICES

被引:51
|
作者
Anderson, Greg W. [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
来源
ANNALS OF PROBABILITY | 2013年 / 41卷 / 3B期
关键词
Noncommutative polynomials; singular values; support; spectrum; Schwinger-Dyson equation; Wigner matrices; NONCOMMUTATIVE POLYNOMIALS; EIGENVALUES;
D O I
10.1214/11-AOP739
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For polynomials in independent Wigner matrices, we prove convergence of the largest singular value to the operator norm of the corresponding polynomial in free semicircular variables, under fourth moment hypotheses. We actually prove a more general result of the form "no eigenvalues outside the support of the limiting eigenvalue distribution." We build on ideas of Haagerup-Schultz-Thorbjornsen on the one hand and Bai-Silverstein on the other. We refine the linearization trick so as to preserve self-adjointness and we develop a secondary trick bearing on the calculation of correction terms. Instead of Poincare-type inequalities, we use a variety of matrix identities and L-p estimates. The Schwinger-Dyson equation controls much of the analysis.
引用
收藏
页码:2103 / 2181
页数:79
相关论文
共 50 条