CONVERGENCE OF THE LARGEST SINGULAR VALUE OF A POLYNOMIAL IN INDEPENDENT WIGNER MATRICES

被引:51
|
作者
Anderson, Greg W. [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
来源
ANNALS OF PROBABILITY | 2013年 / 41卷 / 3B期
关键词
Noncommutative polynomials; singular values; support; spectrum; Schwinger-Dyson equation; Wigner matrices; NONCOMMUTATIVE POLYNOMIALS; EIGENVALUES;
D O I
10.1214/11-AOP739
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For polynomials in independent Wigner matrices, we prove convergence of the largest singular value to the operator norm of the corresponding polynomial in free semicircular variables, under fourth moment hypotheses. We actually prove a more general result of the form "no eigenvalues outside the support of the limiting eigenvalue distribution." We build on ideas of Haagerup-Schultz-Thorbjornsen on the one hand and Bai-Silverstein on the other. We refine the linearization trick so as to preserve self-adjointness and we develop a secondary trick bearing on the calculation of correction terms. Instead of Poincare-type inequalities, we use a variety of matrix identities and L-p estimates. The Schwinger-Dyson equation controls much of the analysis.
引用
收藏
页码:2103 / 2181
页数:79
相关论文
共 50 条
  • [1] Convergence Rate to the Tracy–Widom Laws for the Largest Eigenvalue of Wigner Matrices
    Kevin Schnelli
    Yuanyuan Xu
    Communications in Mathematical Physics, 2022, 393 : 839 - 907
  • [2] On the largest singular values of random matrices with independent Cauchy entries
    Soshnikov, A
    Fyodorov, YV
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (03)
  • [3] Convergence Rate to the Tracy-Widom Laws for the Largest Eigenvalue of Wigner Matrices
    Schnelli, Kevin
    Xu, Yuanyuan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 393 (02) : 839 - 907
  • [4] Upper Bounds for the Largest Singular Value of Certain Digraph Matrices
    Stanic, Zoran
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) : 871 - 879
  • [5] On the largest and the smallest singular value of sparse rectangular random matrices
    Gotze, F.
    Tikhomirov, A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [6] Upper Bounds for the Largest Singular Value of Certain Digraph Matrices
    Zoran Stanić
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 871 - 879
  • [7] Several inequalities for the largest singular value and the spectral radius of matrices
    Shen, Shu-Qian
    Huang, Ting-Zhu
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (04): : 713 - 722
  • [8] Convergence of an algorithm for the largest singular value of a nonnegative rectangular tensor
    Zhou, Guanglu
    Caccetta, Louis
    Qi, Liqun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (02) : 959 - 968
  • [9] THE LARGEST EIGENVALUES OF FINITE RANK DEFORMATION OF LARGE WIGNER MATRICES: CONVERGENCE AND NONUNIVERSALITY OF THE FLUCTUATIONS
    Capitaine, Mireille
    Donati-Martin, Catherine
    Feral, Delphine
    ANNALS OF PROBABILITY, 2009, 37 (01): : 1 - 47
  • [10] An Algorithm for Calculating the QR and Singular Value Decompositions of Polynomial Matrices
    Foster, Joanne A.
    McWhirter, John G.
    Davies, Martin R.
    Chambers, Jonathon A.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1263 - 1274