Seismic tomography using parameter-free Backus-Gilbert inversion

被引:7
|
作者
Zaroli, Christophe [1 ]
机构
[1] Univ Strasbourg, Inst Phys Globe Strasbourg, UMR 7516, EOST,CNRS, F-67084 Strasbourg, France
关键词
Inverse theory; Tomography; Body waves; TELESEISMIC TRAVEL-TIME; FINITE-FREQUENCY; STRUCTURE BENEATH; LOWER-MANTLE; NORMAL-MODE; KERNELS; WAVES; PARAMETRIZATION; AMPLITUDES; DISPERSION;
D O I
10.1093/gji/ggz175
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This proof-of-concept study presents a parameter-free, linear Backus-Gilbert inversion scheme, tractable for seismic tomography problems. It leads to efficient computations of unbiased tomographic images, accompanied by meaningful resolution and uncertainty informations. Moreover, as there is no need to parametrize the model space in this parameter-free approach, it enables numerically accurate data sensitivity kernels to be effectively exploited in tomographic inversions. This is a major benefit over discrete tomographic methods, for which data sensitivity kernels are often inaccurate, as they are projected on a given model parametrization prior to be exploited in the inversion, and these parametrizations are usually coarse to limit the number of parameters and keep tractable the problems of model estimation and/or appraisal. Therefore, this new tomographic scheme fuels great hopes on better constraining multiscale seismic heterogeneities in the Earth's interior by exploiting accurate data sensitivity kernels, that is, taking full advantage of known wave-propagation physics, and enabling quantitative appraisals of tomographic features. As a remark, since its computational cost grows as a function of the total number of data squared, it may be better suited to handle moderate-size data sets, typically encountered in regional-scale tomography. Theoretical developments are illustrated within a finite-frequency physical framework. A set of teleseismic S-wave time residuals is inverted, with focus on imaging and appraising shear-wave velocity anomalies lying in the mantle below Southeast Asia, in the 350-1410km depth range.
引用
收藏
页码:619 / 630
页数:12
相关论文
共 50 条
  • [41] An Efficient Brain Tumor Detection and Segmentation in MRI Using Parameter-Free Clustering
    Shivhare, Shiv Naresh
    Sharma, Shikhar
    Singh, Navjot
    MACHINE INTELLIGENCE AND SIGNAL ANALYSIS, 2019, 748 : 485 - 495
  • [42] Parameter-free determination of the exchange constant in thin films using magnonic patterning
    Langer, M.
    Wagner, K.
    Sebastian, T.
    Huebner, R.
    Grenzer, J.
    Wang, Yutian
    Kubota, T.
    Schneider, T.
    Stienen, S.
    Lenz, K.
    Schultheiss, H.
    Lindner, J.
    Takanashi, K.
    Arias, R. E.
    Fassbender, J.
    APPLIED PHYSICS LETTERS, 2016, 108 (10)
  • [43] EDCONTOURS: HIGH-SPEED PARAMETER-FREE CONTOUR DETECTON USING EDPF
    Akinlar, Cuneyt
    Topal, Cihan
    2012 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2012, : 153 - 156
  • [44] Novel approaches of magnetic inversion using seismic tomography in Taiwan area
    Chen, Chieh-Hung
    Chen, Chun-Rong
    Sun, Shida
    Wen, Strong
    Du, Jinsong
    Lin, Cheng-Horng
    Huang, Yi Hsuan
    Han, Peng
    Liu, Jann-Yenq
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2021, 312
  • [45] A Capability Improvement for Design of CSD Coefficient FIR Filters Using Parameter-free GA
    Takekawa, Motohiro
    Kato, Ryota
    Suyama, Kenji
    IEEJ Transactions on Electronics, Information and Systems, 2021, 141 (11): : 1158 - 1164
  • [46] A parameter-free approach for one-class classification using binary decision diagrams
    Kutsuna, Takuro
    Yamamoto, Akihiro
    INTELLIGENT DATA ANALYSIS, 2014, 18 (05) : 889 - 910
  • [47] nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
    Hollandi, Reka
    Szkalisity, Abel
    Toth, Timea
    Tasnadi, Ervin
    Molnar, Csaba
    Mathe, Botond
    Grexa, Istvan
    Molnar, Jozsef
    Balind, Arpad
    Gorbe, Mate
    Kovacs, Maria
    Migh, Ede
    Goodman, Allen
    Balassa, Tamas
    Koos, Krisztian
    Wang, Wenyu
    Caicedo, Juan Carlos
    Bara, Norbert
    Kovacs, Ferenc
    Paavolainen, Lassi
    Danka, Tivadar
    Kriston, Andras
    Carpenter, Anne Elizabeth
    Smith, Kevin
    Horvath, Peter
    CELL SYSTEMS, 2020, 10 (05) : 453 - +
  • [48] An expectation maximization approach for formant tracking using a parameter-free non-linear predictor
    Bazzi, I
    Acero, A
    Deng, L
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PROCEEDINGS: SPEECH PROCESSING I, 2003, : 464 - 467
  • [49] A New Model-Free Deadbeat Predictive Current Control for PMSM Using Parameter-Free Luenberger Disturbance Observer
    Yang, Nan
    Zhang, Shuo
    Li, Xueping
    Li, Xuerong
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2023, 11 (01) : 407 - 417
  • [50] Ground State Energies of Helium-Like Ions Using a Simple Parameter-Free Matrix Method
    Pingak, Redi Kristian
    Ahab, Atika
    Deta, Utama Alan
    INDONESIAN JOURNAL OF CHEMISTRY, 2021, 21 (04) : 1003 - 1015