Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

被引:240
|
作者
Liang, Chu
Gao, Mingxia [1 ]
Pan, Hongge
Liu, Yongfeng
Yan, Mi
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国博士后科学基金;
关键词
Lithium-ion batteries; Lithium alloys; Metal oxides; Electrochemical properties; Lithium storage mechanisms; SITU X-RAY; NEGATIVE-ELECTRODE MATERIALS; SN-C COMPOSITE; ELECTROCHEMICAL PERFORMANCE; FACILE SYNTHESIS; ALPHA-FE2O3; NANOTUBES; NANOCOMPOSITE ANODES; REVERSIBLE CAPACITY; CARBON NANOTUBES; AMORPHOUS OXIDE;
D O I
10.1016/j.jallcom.2013.04.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:246 / 256
页数:11
相关论文
共 50 条
  • [41] ZnS Nanotubes/Carbon Cloth as a Reversible and High-Capacity Anode Material for Lithium-Ion Batteries
    Huang, Lanyan
    Zhang, Yongguang
    Shang, Chaoqun
    Wang, Xin
    Zhou, Guofu
    Ou, Jian Zhen
    Wang, Yichao
    CHEMELECTROCHEM, 2019, 6 (02): : 461 - 466
  • [42] Nanostructure designing and hybridizing of high-capacity silicon-based anode for lithium-ion batteries
    Longzhi Li
    Yue Deng
    Kunkun Hu
    Bangqiang Xu
    Nana Wang
    Zhongchao Bai
    Xun Xu
    Jian Yang
    Progress in Natural Science:Materials International, 2023, 33 (01) : 16 - 36
  • [43] Nanostructure designing and hybridizing of high-capacity silicon-based anode for lithium-ion batteries
    Li, Longzhi
    Deng, Yue
    Hu, Kunkun
    Xu, Bangqiang
    Wang, Nana
    Bai, Zhongchao
    Xu, Xun
    Yang, Jian
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2023, 33 (01) : 16 - 36
  • [44] Ultra-efficient polymer binder for silicon anode in high-capacity lithium-ion batteries
    Gao, Shilun
    Sun, Feiyuan
    Brady, Alexander
    Pan, Yiyang
    Erwin, Andrew
    Yang, Dandan
    Tsukruk, Vladimir
    Stack, Andrew G.
    Saito, Tomonori
    Yang, Huabin
    Cao, Peng-Fei
    NANO ENERGY, 2020, 73 (73)
  • [45] Facile synthesis of cobalt vanadate as high-capacity and durable anode material for lithium-ion batteries
    Narsimulu, D.
    Rao, B. Nageswara
    Bhanu, J. Udaya
    Shanthappa, R.
    Bandi, Hari
    Yu, Jae Su
    Journal of Energy Storage, 2024, 101
  • [46] Systematic study on group 14 elements and their oxides for high-capacity anode active materials of lithium-ion secondary battery
    Murayama, Masaki
    Yamamoto, Yoshitsugu
    Fujiwara, Motoyoshi
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2016, 124 (03) : 203 - 207
  • [47] Anode materials for lithium-ion batteries: A review
    Nzereogu, P. U.
    Omah, A. D.
    Ezema, F. I.
    Iwuoha, E. I.
    Nwanya, A. C.
    APPLIED SURFACE SCIENCE ADVANCES, 2022, 9
  • [48] Si-Y multi-layer thin films as anode materials of high-capacity lithium-ion batteries
    Li, Haixia
    Bai, Hongmei
    Tao, Zhanliang
    Chen, Jun
    JOURNAL OF POWER SOURCES, 2012, 217 : 102 - 107
  • [49] Conjugated ladder-type polymers with multielectron reactions as high-capacity organic anode materials for lithium-ion batteries
    Yu, Jie
    Chen, Xinyu
    Wang, Heng-guo
    Gao, Bo
    Han, Donglai
    Si, Zhenjun
    SCIENCE CHINA-MATERIALS, 2022, 65 (09) : 2354 - 2362
  • [50] High-capacity SiOx (0≤x≤2) as promising anode materials for next-generation lithium-ion batteries
    Jiao, Miaolun
    Wang, Yangfeng
    Ye, Chenliang
    Wang, Chengyang
    Zhang, Wenkui
    Liang, Chu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842