Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions

被引:66
|
作者
Morgan, Daniel J. [1 ,2 ,3 ]
Bame, Bill [1 ]
Zimand, Paul [1 ]
Dooley, Patrick [1 ]
Thom, Kerri A. [1 ,2 ]
Harris, Anthony D. [2 ,3 ]
Bentzen, Soren [2 ]
Ettinger, Walt [1 ]
Garrett-Ray, Stacy D. [1 ]
Tracy, J. Kathleen [2 ]
Liang, Yuanyuan [2 ]
机构
[1] Univ Maryland Med Syst, Dept Populat Hlth, Baltimore, MD USA
[2] Univ Maryland, Sch Med, Dept Epidemiol & Publ Hlth, 10 S Pine St,Med Student Teaching Facil 334, Baltimore, MD 21201 USA
[3] Vet Affairs Maryland Healthcare Syst, Dept Healthcare Epidemiol, Baltimore, MD USA
关键词
RISK;
D O I
10.1001/jamanetworkopen.2019.0348
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IMPORTANCE Hospital readmissions are associated with patient harm and expense. Ways to prevent hospital readmissions have focused on identifying patients at greatest risk using prediction scores. OBJECTIVE To identify the type of score that best predicts hospital readmissions. DESIGN, SETTING, AND PARTICIPANTS This prognostic study included 14 062 consecutive adult hospital patients with 16 649 discharges from a tertiary care center, suburban community hospital, and urban critical access hospital in Maryland from September 1, 2016, through December 31, 2016. Patients not included as eligible discharges by the Centers for Medicare & Medicaid Services or the Chesapeake Regional Information System for Our Patients were excluded. A machine learning rank score, the Baltimore score (B score) developed using a machine learning technique, for each individual hospital using data from the 2 years before September 1, 2016, was compared with standard readmission risk assessment scores to predict 30-day unplanned readmissions. MAIN OUTCOMES AND MEASURES The 30-day readmission rate evaluated using various readmission scores: B score, HOSPITAL score, modified LACE score, and Maxim/RightCare score. RESULTS Of the 10 732 patients (5605 [52.2%] male; mean [SD] age, 54.56 [22.42] years) deemed to be eligible for the study, 1422 were readmitted. The area under the receiver operating characteristic curve (AUROC) for individual rules was 0.63 (95% CI, 0.61-0.65) for the HOSPITAL score, which was significantly lower than the 0.66 for modified LACE score (95% CI, 0.64-0.68; P < .001). The B score machine learning score was significantly better than all other scores; 48 hours after admission, the AUROC of the B score was 0.72 (95% CI, 0.70-0.73), which increased to 0.78 (95% CI, 0.77-0.79) at discharge (all P < .001). At the hospital using Maxim/RightCare score, the AUROC was 0.63 (95% CI, 0.59-0.69) for HOSPITAL, 0.64 (95% CI, 0.61-0.68) for Maxim/RightCare, and 0.66 (95% CI, 0.62-0.69) for modified LACE score. The B score was 0.72 (95% CI, 0.69-0.75) 48 hours after admission and 0.81 (95% CI, 0.79-0.84) at discharge. In directly comparing the B score with the sensitivity at cutoff values for modified LACE, HOSPITAL, and Maxim/RightCare scores, the B score was able to identify the same number of readmitted patients while flagging 25.5% to 54.9% fewer patients. CONCLUSIONS AND RELEVANCE Among 3 hospitals in different settings, an automated machine learning score better predicted readmissions than commonly used readmission scores. More efficiently targeting patients at higher risk of readmission may be the first step toward potentially preventing readmissions.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study
    Ru, Boshu
    Tan, Xi
    Liu, Yu
    Kannapur, Kartik
    Ramanan, Dheepan
    Kessler, Garin
    Lautsch, Dominik
    Fonarow, Gregg
    JMIR FORMATIVE RESEARCH, 2023, 7
  • [42] UTILITY OF MACHINE LEARNING, NATURAL LANGUAGE PROCESSING, AND ARTIFICIAL INTELLIGENCE IN PREDICTING HOSPITAL READMISSIONS AFTER ORTHOPAEDIC SURGERY A Systematic Review and Meta-Analysis
    Fares, Mohamad Y.
    Liu, Harry H.
    Etges, Ana Paula Beck da Silva
    Zhang, Benjamin
    Warner, Jon J. P.
    Olson, Jeffrey J.
    Fedorka, Catherine J.
    Khan, Adam Z.
    Best, Matthew J.
    Kirsch, Jacob M.
    Simon, Jason E.
    Sanders, Brett
    Costouros, John G.
    Zhang, Xiaoran
    Jones, Porter
    Haas, Derek A.
    Abboud, Joseph A.
    JBJS REVIEWS, 2024, 12 (08)
  • [43] ASSESSMENT OF MACHINE LEARNING MODELS FOR FRACTURE RISK PREDICTION
    Sykes, E.
    Jain, R.
    Sano, N.
    Moon, H. N.
    Weldon, J.
    Shanker, R.
    Voytenko, V.
    Sullivan, J.
    Sauer, D.
    AGING CLINICAL AND EXPERIMENTAL RESEARCH, 2023, 35 : S87 - S87
  • [44] MACHINE LEARNING FOR AUTOMATIC STROKE ASSESSMENT AND OUTCOME PREDICTION
    Laksari, K.
    Tahsili-Fahadan, P.
    Deshpande, A.
    INTERNATIONAL JOURNAL OF STROKE, 2023, 18 (03) : 56 - 57
  • [45] ASSESSMENT OF MACHINE LEARNING MODELS FOR FRACTURE RISK PREDICTION
    Sykes, E.
    Jain, R.
    Sano, N.
    Moon, H. N.
    Weldon, J.
    Shanker, R.
    Voytenko, V.
    Sullivan, J.
    Sauer, D.
    AGING CLINICAL AND EXPERIMENTAL RESEARCH, 2023, 35 : S157 - S157
  • [46] Assessment of Machine Learning Techniques for Monthly Flow Prediction
    Alizadeh, Zahra
    Yazdi, Jafar
    Kim, Joong Hoon
    Al-Shamiri, Abobakr Khalil
    WATER, 2018, 10 (11)
  • [47] Predicting hospital admission at emergency department triage using machine learning
    Hong, Woo Suk
    Haimovich, Adrian Daniel
    Taylor, R. Andrew
    PLOS ONE, 2018, 13 (07):
  • [48] APPLICATION OF MACHINE LEARNING IN PREDICTING HOSPITAL READMISSION: A SYSTEMATIC REVIEW OF LITERATURE
    Huang, Y.
    Talwar, A.
    Chatterjee, S.
    Aparasu, R. R.
    VALUE IN HEALTH, 2020, 23 : S310 - S310
  • [49] Predicting future hospital antimicrobial resistance prevalence using machine learning
    Vihta, Karina-Doris
    Pritchard, Emma
    Pouwels, Koen B.
    Hopkins, Susan
    Guy, Rebecca L.
    Henderson, Katherine
    Chudasama, Dimple
    Hope, Russell
    Muller-Pebody, Berit
    Walker, Ann Sarah
    Clifton, David
    Eyre, David W.
    COMMUNICATIONS MEDICINE, 2024, 4 (01):
  • [50] An Interpretable Machine Learning Approach for Predicting Hospital Length of Stay and Readmission
    Liu, Yuxi
    Qin, Shaowen
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2021, PT I, 2022, 13087 : 73 - 85