Regular sphere packings

被引:2
|
作者
Harborth, H [1 ]
Szabó, L
Ujváry-Menyhárt, Z
机构
[1] Tech Univ Braunschweig, Diskrete Math, D-38023 Braunschweig, Germany
[2] Eotvos Lorand Univ, Dept Geometry, H-1053 Budapest, Hungary
[3] Hungarian Acad Sci, Comp & Automat Res Inst, H-1111 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Natural Number; Boundary Point; Sphere Packing; Regular Sphere; Congruent Sphere;
D O I
10.1007/s00013-002-8219-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A collection of non-overlapping spheres in the space is called a packing. Two spheres are said to be neighbours if they have a boundary point in common. A packing is called k-regular if each sphere has exactly k neighbours. We are concerned with the following question. What is the minimum number of not necessarily congruent spheres which may form a k-regular packing? In general, for which natural numbers n and k does there exist a connected k-regular packing of exactly n spheres?
引用
收藏
页码:81 / 89
页数:9
相关论文
共 50 条
  • [31] Packings of a charged line on a sphere
    Alben, Silas
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [32] Densest binary sphere packings
    Hopkins, Adam B.
    Stillinger, Frank H.
    Torquato, Salvatore
    PHYSICAL REVIEW E, 2012, 85 (02)
  • [33] Sphere packings .2.
    Hales, TC
    DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 18 (02) : 135 - 149
  • [34] Jammed lattice sphere packings
    Kallus, Yoav
    Marcotte, Etienne
    Torquato, Salvatore
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [35] Sphere packings as stem cells
    Senechal, Marjorie
    STRUCTURAL CHEMISTRY, 2017, 28 (01) : 27 - 31
  • [36] Shearing of frictional sphere packings
    Metayer, J. -F.
    Suntrup, D. J., III
    Radin, C.
    Swinney, H. L.
    Schroeter, M.
    EPL, 2011, 93 (06)
  • [37] Sphere Packings with Exceptional Properties
    Koch, Elke
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C85 - C85
  • [38] Jammed lattice sphere packings
    Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, United States
    不详
    不详
    不详
    不详
    Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 1600, 6
  • [39] ON SPHERE PACKINGS, SETTLING AND DILATANCY
    WEAIRE, D
    WOOTEN, F
    PHILOSOPHICAL MAGAZINE LETTERS, 1990, 62 (06) : 423 - 426
  • [40] Algebraic curves and sphere packings
    Tsfasman, MA
    ARITHMETIC, GEOMETRY AND CODING THEORY, 1996, : 225 - 251