Classification of Motor Imagery BCI Using Multivariate Empirical Mode Decomposition

被引:170
|
作者
Park, Cheolsoo [1 ]
Looney, David [2 ]
Rehman, Naveed Ur [3 ]
Ahrabian, Alireza [2 ]
Mandic, Danilo P. [2 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ London Imperial Coll Sci Technol & Med, Elect & Elect Engn Dept, London SW7 2BT, England
[3] COMSATS Inst Informat Technol, Islamabad, Pakistan
关键词
Brain-computer interface (BCI); electroencephalogram (EEG); empirical mode decomposition; motor imagery paradigm; noise assisted multivariate extensions of empirical mode decomposition (NA-MEMD); BRAIN-COMPUTER INTERFACE; SINGLE-TRIAL EEG; DESYNCHRONIZATION; SYNCHRONIZATION; COMPONENTS; SPECTRUM; DYNAMICS; MU;
D O I
10.1109/TNSRE.2012.2229296
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Brain electrical activity recorded via electroencephalogram (EEG) is the most convenient means for brain-computer interface (BCI), and is notoriously noisy. The information of interest is located in well defined frequency bands, and a number of standard frequency estimation algorithms have been used for feature extraction. To deal with data nonstationarity, low signal-to-noise ratio, and closely spaced frequency bands of interest, we investigate the effectiveness of recently introduced multivariate extensions of empirical mode decomposition (MEMD) in motor imagery BCI. We show that direct multi-channel processing via MEMD allows for enhanced localization of the frequency information in EEG, and, in particular, its noise-assisted mode of operation (NA-MEMD) provides a highly localized time-frequency representation. Comparative analysis with other state of the art methods on both synthetic benchmark examples and a well established BCI motor imagery dataset support the analysis.
引用
收藏
页码:10 / 22
页数:13
相关论文
共 50 条
  • [41] Hyperspectral Image Classification with Multivariate Empirical Mode Decomposition-based Features
    He, Zhi
    Zhang, Miao
    Shen, Yi
    Wang, Qiang
    Wang, Yan
    Yu, Renlong
    2014 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC) PROCEEDINGS, 2014, : 999 - 1004
  • [42] EEG motor imagery classification using deep learning approaches in naive BCI users
    Guerrero-Mendez, Cristian D.
    Blanco-Diaz, Cristian F.
    Ruiz-Olaya, Andres F.
    Lopez-Delis, Alberto
    Jaramillo-Isaza, Sebastian
    Milanezi Andrade, Rafhael
    Ferreira De Souza, Alberto
    Delisle-Rodriguez, Denis
    Frizera-Neto, Anselmo
    Bastos-Filho, Teodiano F.
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2023, 9 (04):
  • [43] Two Class Motor Imagery EEG Signal Classification for BCI Using LDA and SVM
    Kanagaluru, Venkatesh
    Sasikala, M.
    TRAITEMENT DU SIGNAL, 2024, 41 (05) : 2743 - 2749
  • [44] Frequency Domain CSP for Foot Motor Imagery Classification Using SVM for BCI Application
    Somadder, Rittika
    Saha, Dabasish Kumar
    2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 30 - 34
  • [45] Stimulus Effects on Subject-Specific BCI Classification Training using Motor Imagery
    Miloulis, Stavros Theofanis
    Kakkos, Ioannis
    Karampasi, Aikaterini
    Zorzos, Ioannis
    Ventouras, Errikos-Chaim
    Matsopoulos, George K.
    Asvestas, Panteleimon
    Kalatzis, Ioannis
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [46] Motor Imagery Signal Classification Using Constant-Q Transform for BCI Applications
    Balim, Mustafa Alper
    Hanilci, Cemal
    Acir, Nurettin
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1306 - 1310
  • [47] Motor Imagery Data Classification for BCI Application Using Wavelet Packet Feature Extraction
    Hettiarachchi, Imali Thanuja
    Thanh Thi Nguyen
    Nahavandi, Saeid
    NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 : 519 - 526
  • [48] Improved Classification of Motor Imagery Datasets for BCI by using Approximate Entropy and WOSF Features
    Sen Gupta, Soumya
    Soman, Sumit
    Raj, P. Govind
    Prakash, Rishi
    2014 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2014, : 90 - 94
  • [49] Classification based on sparse representations of attributes derived from empirical mode decomposition in a multiclass problem of motor imagery in EEG signals
    de Menezes, Jose Antonio Alves
    Gomes, Juliana Carneiro
    Hazin, Vitor de Carvalho
    Dantas, Julio Cesar Sousa
    Rodrigues, Marcelo Cairrao Araujo
    dos Santos, Wellington Pinheiro
    HEALTH AND TECHNOLOGY, 2023, 13 (05) : 747 - 767
  • [50] Novel use of Empirical Mode Decomposition in single-trial classification of Motor Imagery for use in Brain-Computer Interfaces
    Davies, Simon R. H.
    James, Christopher J.
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 5610 - 5613