Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals

被引:91
|
作者
Shalbaf, Ahmad [1 ]
Bagherzadeh, Sara [2 ]
Maghsoudi, Arash [2 ]
机构
[1] Shahid Beheshti Univ Med Sci, Sch Med, Dept Biomed Engn & Med Phys, Tehran, Iran
[2] Islamic Azad Univ, Dept Biomed Engn, Sci & Res Brach, Tehran, Iran
关键词
Schizophrenia; Electroencephalogram; Transfer learning; Convolutional neural network; Continuous wavelet transform; COMPUTER-AIDED DIAGNOSIS; WHITE-MATTER VOLUMES; PREDICTION; DYNAMICS; SYSTEM; CANCER; GRAY;
D O I
10.1007/s13246-020-00925-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Schizophrenia (SZ) is a severe disorder of the human brain which disturbs behavioral characteristics such as interruption in thinking, memory, perception, speech and other living activities. If the patient suffering from SZ is not diagnosed and treated in the early stages, damage to human behavioral abilities in its later stages could become more severe. Therefore, early discovery of SZ may help to cure or limit the effects. Electroencephalogram (EEG) is prominently used to study brain diseases such as SZ due to having high temporal resolution information, and being a noninvasive and inexpensive method. This paper introduces an automatic methodology based on transfer learning with deep convolutional neural networks (CNNs) for the diagnosis of SZ patients from healthy controls. First, EEG signals are converted into images by applying a time-frequency approach called continuous wavelet transform (CWT) method. Then, the images of EEG signals are applied to the four popular pre-trained CNNs: AlexNet, ResNet-18, VGG-19 and Inception-v3. The output of convolutional and pooling layers of these models are used as deep features and are fed into the support vector machine (SVM) classifier. We have tuned the parameters of SVM to classify SZ patients and healthy subjects. The efficiency of the proposed method is evaluated on EEG signals from 14 healthy subjects and 14 SZ patients. The experiments showed that the combination of frontal, central, parietal, and occipital regions applied to the ResNet-18-SVM achieved best results with accuracy, sensitivity and specificity of 98.60% +/- 2.29, 99.65% +/- 2.35 and 96.92% +/- 2.25, respectively. Therefore, the proposed method as a diagnostic tool can help clinicians in detection of the SZ patients for early diagnosis and treatment.
引用
收藏
页码:1229 / 1239
页数:11
相关论文
共 50 条
  • [21] Structural Damage Detection using Deep Convolutional Neural Network and Transfer Learning
    Chuncheng Feng
    Hua Zhang
    Shuang Wang
    Yonglong Li
    Haoran Wang
    Fei Yan
    KSCE Journal of Civil Engineering, 2019, 23 : 4493 - 4502
  • [22] Structural Damage Detection using Deep Convolutional Neural Network and Transfer Learning
    Feng, Chuncheng
    Zhang, Hua
    Wang, Shuang
    Li, Yonglong
    Wang, Haoran
    Yan, Fei
    KSCE JOURNAL OF CIVIL ENGINEERING, 2019, 23 (10) : 4493 - 4502
  • [23] Image Splicing Detection based on Deep Convolutional Neural Network and Transfer Learning
    Das, Debjit
    Naskar, Ruchira
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [24] Deep Neural Network Model for Automated Detection of Alzheimer's Disease using EEG Signals
    Deshmukh, Atharva
    Karki, Maya, V
    Bhuvan, S. R.
    Gaurav, S.
    Hitesh, J. P.
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2022, 18 (08) : 115 - 126
  • [25] Epilepsy Detection by Using Scalogram Based Convolutional Neural Network from EEG Signals
    Turk, Omer
    Ozerdem, Mehmet Sirac
    BRAIN SCIENCES, 2019, 9 (05)
  • [26] Transfer Learning and Hybrid Deep Convolutional Neural Networks Models for Autism Spectrum Disorder Classification From EEG Signals
    Al-Qazzaz, Noor Kamal
    Aldoori, Alaa A.
    Buniya, Ali K.
    Ali, Sawal Hamid Bin Mohd
    Ahmad, Siti Anom
    IEEE ACCESS, 2024, 12 : 64510 - 64530
  • [27] Sparse Deep Transfer Learning for Convolutional Neural Network
    Liu, Jiaming
    Wang, Yali
    Qiao, Yu
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2245 - 2251
  • [28] A graph convolutional neural network for the automated detection of seizures in the neonatal EEG
    Raeisi, Khadijeh
    Khazaei, Mohammad
    Croce, Pierpaolo
    Tamburro, Gabriella
    Comani, Silvia
    Zappasodi, Filippo
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 222
  • [29] Learning temporal-frequency features of physionet EEG signals using deep convolutional neural network
    Sorkhi, Maryam
    Jahed-Motlagh, Mohammad Reza
    Minaei-Bidgoli, Behrouz
    Daliri, Mohammad Reza
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (04):
  • [30] Double Attention-Based Deep Convolutional Neural Network for Seizure Detection Using EEG Signals
    Shi, Lin
    Wang, Zexin
    Ma, Yuanwei
    Chen, Jianjun
    Xu, Jingzhou
    Qi, Jun
    ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT II, ICIC 2024, 2024, 14882 : 392 - 404