Synthesis and properties of carbon-carbon composite material based on nanoporous carbon

被引:0
|
作者
Sokolov, V. V. [1 ]
Kukushkina, Yu. A. [1 ]
Tomkovich, M. V. [1 ]
机构
[1] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 194021, Russia
关键词
Carbide; Compaction Pressure; Nanoporous Carbon; Thermochemical Treatment; Porous Structure Parameter;
D O I
10.1134/S1070427215060154
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Effect of synthesis parameters of carbon-carbon nanoporous composites in the form of compact bodies with various geometric shapes on their structure and properties was studied. The synthesis process includes three technological stages: molding of blanks with prescribed size and shape powdered Ti, Si, B, Mo, etc. carbides, their thermal treatment with methane to give a carbide-pyrocarbon composite, thermochemical treatment of the composite with chlorine to give the final material, carbon-carbon nanoporous composite in which nanoporous carbon is a filler, and pyrocarbon, a binder. It is shown that the ratio between the carbide phases and pyrocarbon, compaction pressure, and temperature of chlorination of the chemical composition of carbide affect the properties of the composite. The carbon-carbon composites synthesized contain nanopores 0.7-3 nm in size and micropores and have a large specific surface area (up to 1000 m(2) g(-1)). The volume of the nanopores in the composites varies within the range 0.42-0.79 cm(3) g(-1).
引用
收藏
页码:990 / 998
页数:9
相关论文
共 50 条
  • [31] High-temperature treatment of carbon-carbon composite materials. Communication 1. Thermal stabilization of two-dimensionally reinforced carbon-carbon composite material object properties
    S. A. Kolesnikov
    G. E. Mostovoi
    [J]. Refractories and Industrial Ceramics, 2012, 53 : 123 - 129
  • [32] Properties of carbon-carbon composites based on exfoliated graphite
    Savchenko, D. V.
    Ionov, S. G.
    Sizov, A. I.
    [J]. INORGANIC MATERIALS, 2010, 46 (02) : 132 - 138
  • [33] Properties of carbon-carbon composites based on exfoliated graphite
    D. V. Savchenko
    S. G. Ionov
    A. I. Sizov
    [J]. Inorganic Materials, 2010, 46 : 132 - 138
  • [34] Assessment of Fracture Toughness of a Discretely-Reinforced Carbon-Carbon Composite Material
    Stepashkin, A. A.
    Ozherelkov, D. Yu.
    Sazonov, Yu. B.
    Komissarov, A. A.
    Mozolev, V. V.
    [J]. METAL SCIENCE AND HEAT TREATMENT, 2015, 57 (3-4) : 229 - 235
  • [35] Assessment of Fracture Toughness of a Discretely-Reinforced Carbon-Carbon Composite Material
    A. A. Stepashkin
    D. Yu. Ozherelkov
    Yu. B. Sazonov
    A. A. Komissarov
    V. V. Mozolev
    [J]. Metal Science and Heat Treatment, 2015, 57 : 229 - 235
  • [36] Mechanical Properties of Structural Carbon-Carbon Layered Material at High Temperatures
    Mostovoy G.E.
    Karpov A.P.
    Shishkov I.V.
    [J]. Inorganic Materials: Applied Research, 2019, 10 (05) : 1123 - 1128
  • [37] Mechanical properties of carbon-carbon composite components determined using nanoindentation
    Marx, DT
    Riester, L
    [J]. CARBON, 1999, 37 (11) : 1679 - 1684
  • [38] Carbon-Carbon Allotropic Hybrids and Composites: Synthesis, Properties, And Applications
    Kharissova, Oxana V.
    Kharisov, Boris I.
    Oliva Gonzalez, Cesar M.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (10) : 3921 - 3948
  • [39] Estimation of directional-dependent thermal properties in a carbon-carbon composite
    Dowding, KJ
    Beck, JV
    Blackwell, BF
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1996, 39 (15) : 3157 - 3164
  • [40] MATERIAL DAMPING STUDIES ON CARBON-CARBON COMPOSITES
    VAIDYA, UK
    RAJU, PK
    KOWBEL, W
    [J]. CARBON, 1992, 30 (06) : 925 - 929