Tolerances as images of congruences in varieties defined by linear identities

被引:6
|
作者
Chajda, Ivan [1 ]
Czedli, Gabor [2 ]
Halas, Radomir [1 ]
Lipparini, Paolo [3 ]
机构
[1] Palacky Univ, Dept Algebra & Geometry, Olomouc 77146, Czech Republic
[2] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
[3] Univ Roma Tor Vergata, Dept Math, I-00133 Rome, Italy
关键词
tolerance relation; homomorphic image of a congruence; linear identity; balanced identity;
D O I
10.1007/s00012-013-0219-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An identity s = t is linear if each variable occurs at most once in each of the terms s and t. Let T be a tolerance relation of an algebra A in a variety defined by a set of linear identities. We prove that there exist an algebra B in the same variety and a congruence theta of B such that a homomorphism from B onto A maps theta onto T.
引用
收藏
页码:167 / 169
页数:3
相关论文
共 50 条
  • [21] VARIETIES WITH DEFINABLE FACTOR CONGRUENCES
    Sanchez Terraf, Pedro
    Vaggione, Diego J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (10) : 5061 - 5088
  • [22] CONGRUENCES DEFINED BY LANGUAGES AND FILTERS
    PRODINGER, H
    INFORMATION AND CONTROL, 1980, 44 (01): : 36 - 46
  • [23] ARITHMETICAL SEMIGROUPS DEFINED BY CONGRUENCES
    HALTERKOCH, F
    SEMIGROUP FORUM, 1991, 42 (01) : 59 - 62
  • [24] IDENTITIES AND CONGRUENCES INVOLVING THE GEOMETRIC POLYNOMIALS
    Mihoubi, Miloud
    Taharbouchet, Said
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (01) : 395 - 408
  • [25] Identities and congruences for Ramanujan's ω(q)
    Bruinier, Jan H.
    Ono, Ken
    RAMANUJAN JOURNAL, 2010, 23 (1-3): : 151 - 157
  • [26] The Number of Subuniverses, Congruences, Weak Congruences of Semilattices Defined by Trees
    Ahmed, Delbrin
    Horvath, Eszter K.
    Nemeth, Zoltan
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2023, 40 (02): : 335 - 348
  • [27] The Number of Subuniverses, Congruences, Weak Congruences of Semilattices Defined by Trees
    Delbrin Ahmed
    Eszter K. Horváth
    Zoltán Németh
    Order, 2023, 40 : 335 - 348
  • [28] Identities and congruences for Ramanujan’s ω(q)
    Jan H. Bruinier
    Ken Ono
    The Ramanujan Journal, 2010, 23 : 151 - 157
  • [29] BINOMIAL IDENTITIES AND CONGRUENCES FOR EULER NUMBERS
    Hirschhorn, Michael D.
    FIBONACCI QUARTERLY, 2015, 53 (04): : 319 - 322
  • [30] New identities and congruences for Euler numbers
    Maiga, Hamadoun
    ADVANCES IN NON-ARCHIMEDEAN ANALYSIS, 2016, 665 : 139 - 158