AVERAGES OVER SPHERES FOR KINETIC TRANSPORT EQUATIONS WITH VELOCITY DERIVATIVES IN THE RIGHT-HAND SIDE

被引:2
|
作者
Bournaveas, Nikolaos [1 ]
Gutierrez, Susana [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
关键词
velocity-averaging lemmas; kinetic transport equation; hyperbolic Sobolev spaces;
D O I
10.1137/070698415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove estimates in hyperbolic Sobolev spaces H-s,H-delta(R1+d), d >= 3, for velocity averages over spheres of solutions to the kinetic transport equation partial derivative(t)f + v . del(x)f = Omega(i,j)(v) g, where Omega(i,j)(v) g are tangential velocity derivatives of g. Our results extend to all dimensions earlier results of Bournaveas and Perthame in dimension two [J. Math. Pures Appl., 9 (2001), pp. 517-534]. We construct counterexamples to test the optimality of our results.
引用
收藏
页码:653 / 674
页数:22
相关论文
共 50 条