Characterization of enhancer fragments in Drosophila robo2

被引:0
|
作者
Hauptman, Gina [1 ]
Reichert, Marie C. [1 ]
Rhida, Muna A. Abdal [1 ,2 ]
Evans, Timothy A. [1 ]
机构
[1] Univ Arkansas, Dept Biol Sci, Fayetteville, AR 72701 USA
[2] Wasit Univ, Dept Biol, Kut, Iraq
关键词
Drosophila melanogaster; Robo2; axon guidance; midline crossing; enhancers; LONG-RANGE GUIDANCE; AXON GUIDANCE; ROBO RECEPTORS; EXPRESSION PATTERNS; GROWTH CONE; SLIT; MIDLINE; ROUNDABOUT; REPULSION; MIGRATION;
D O I
10.1080/19336934.2022.2126259
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Receptor proteins of the Roundabout (Robo) family regulate axon guidance decisions during nervous system development. Among the three Drosophila robo family genes (robo1, robo2 and robo3), robo2 displays a dynamic expression pattern and regulates multiple axon guidance outcomes, including preventing midline crossing in some axons, promoting midline crossing in others, forming lateral longitudinal axon pathways, and regulating motor axon guidance. The identity and location of enhancer elements regulating robo2's complex and dynamic expression pattern in different neural cell types are unknown. Here, we characterize a set of 17 transgenic lines expressing GAL4 under the control of DNA sequences derived from noncoding regions in and around robo2, to identify enhancers controlling specific aspects of robo2 expression in the embryonic ventral nerve cord. We identify individual fragments that confer expression in specific cell types where robo2 is known to function, including early pioneer neurons, midline glia and lateral longitudinal neurons. Our results indicate that robo2's dynamic expression pattern is specified by a combination of enhancer elements that are active in different subsets of cells. We show that robo2's expression in lateral longitudinal axons represents two genetically separable subsets of neurons, and compare their axon projections with each other and with Fasciclin II (FasII), a commonly used marker of longitudinal axon pathways. In addition, we provide a general description of each fragment's expression in embryonic tissues outside of the nervous system, to serve as a resource for other researchers interested in robo2 expression and its functional roles outside the central nervous system.
引用
收藏
页码:312 / 346
页数:35
相关论文
共 50 条
  • [21] Slit dependent Robo2 activity is masked by Robo1 and Robo3 in the embryonic vertebrate forebrain
    Devine, C. A.
    Connor, R. M.
    Key, B.
    MECHANISMS OF DEVELOPMENT, 2005, 122 : S107 - S107
  • [22] The Slit-binding Ig1 domain is required for multiple axon guidance activities of Drosophila Robo2
    Howard, LaFreda J.
    Reichert, Marie C.
    Evans, Timothy A.
    GENESIS, 2021, 59 (09)
  • [23] Common variation near ROBO2 is associated with expressive vocabulary in infancy
    Beate St Pourcain
    Rolieke A.M. Cents
    Andrew J.O. Whitehouse
    Claire M.A. Haworth
    Oliver S.P. Davis
    Paul F. O’Reilly
    Susan Roulstone
    Yvonne Wren
    Qi W. Ang
    Fleur P. Velders
    David M. Evans
    John P. Kemp
    Nicole M. Warrington
    Laura Miller
    Nicholas J. Timpson
    Susan M. Ring
    Frank C. Verhulst
    Albert Hofman
    Fernando Rivadeneira
    Emma L. Meaburn
    Thomas S. Price
    Philip S. Dale
    Demetris Pillas
    Anneli Yliherva
    Alina Rodriguez
    Jean Golding
    Vincent W.V. Jaddoe
    Marjo-Riitta Jarvelin
    Robert Plomin
    Craig E. Pennell
    Henning Tiemeier
    George Davey Smith
    Nature Communications, 5
  • [24] AKAP79 Interacts with the Axon Guidance Receptor Robo2
    Samelson, Bret
    Colledge, Marcie
    Scott, John
    FASEB JOURNAL, 2013, 27
  • [25] Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain
    Lopez-Bendito, Guillermina
    Flames, Nuria
    Ma, Le
    Fouquet, Coralie
    Di Meglio, Thomas
    Chedotal, Alain
    Tessier-Lavigne, Marc
    Marin, Oscar
    JOURNAL OF NEUROSCIENCE, 2007, 27 (13): : 3395 - 3407
  • [26] Common variation near ROBO2 is associated with expressive vocabulary in infancy
    St Pourcain, Beate
    Cents, Rolieke A. M.
    Whitehouse, Andrew J. O.
    Haworth, Claire M. A.
    Davis, Oliver S. P.
    O'Reilly, Paul F.
    Roulstone, Susan
    Wren, Yvonne
    Ang, Qi W.
    Velders, Fleur P.
    Evans, David M.
    Kemp, John P.
    Warrington, Nicole M.
    Miller, Laura
    Timpson, Nicholas J.
    Ring, Susan M.
    Verhulst, Frank C.
    Hofman, Albert
    Rivadeneira, Fernando
    Meaburn, Emma L.
    Price, Thomas S.
    Dale, Philip S.
    Pillas, Demetris
    Yliherva, Anneli
    Rodriguez, Alina
    Golding, Jean
    Jaddoe, Vincent W. V.
    Jarvelin, Marjo-Riitta
    Plomin, Robert
    Pennell, Craig E.
    Tiemeier, Henning
    Smith, George Davey
    NATURE COMMUNICATIONS, 2014, 5
  • [27] Robo2 is required for Slit-mediated intraretinal axon guidance
    Thompson, Hannah
    Andrews, William
    Parnavelas, John G.
    Erskine, Lynda
    DEVELOPMENTAL BIOLOGY, 2009, 335 (02) : 418 - 426
  • [28] Robo2 regulates synaptic oxytocin content by affecting actin dynamics
    Anbalagan, Savani
    Blechman, Janna
    Gliksberg, Michael
    Gordon, Ludmila
    Rotkopf, Ron
    Dadosh, Tali
    Shimoni, Eyal
    Levkowitz, Gil
    ELIFE, 2019, 8
  • [29] Pathfinding and error correction by retinal axons:: The role of astray/robo2
    Hutson, LD
    Chien, CB
    NEURON, 2002, 33 (02) : 205 - 217
  • [30] Temporal regulation of axonal repulsion by alternative splicing of a conserved microexon in mammalian Robo1 and Robo2
    Johnson, Verity
    Junge, Harald J.
    Chen, Zhe
    ELIFE, 2019, 8