Classification of Delaunay type surfaces

被引:0
|
作者
Earp, RS
Toubiana, E
机构
[1] Pontificia Univ Catolica, Dept Matemat, BR-22453900 Gavea Rio De Janeiro, Brazil
[2] Univ Paris 07, Dept Math, F-75251 Paris 05, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study complete and noncomplete rotational special Weingarten surfaces in euclidean space. We prove general existence and uniqueness theorems for such complete surfaces.
引用
收藏
页码:671 / 700
页数:30
相关论文
共 50 条
  • [21] On The intrinsic equation behind the Delaunay surfaces
    Mladenov, Ivailo M.
    Hadzhilazova, Mariana Ts.
    Djondjorov, Peter A.
    Vasilev, Vassil M.
    GEOMETRIC METHODS IN PHYSICS, 2008, 1079 : 274 - +
  • [22] Rolling construction for anisotropic Delaunay surfaces
    Koiso, Miyuki
    Palmer, Bennett
    PACIFIC JOURNAL OF MATHEMATICS, 2008, 234 (02) : 345 - 378
  • [23] Delaunay Triangulation on Skeleton of Flowers for Classification
    Kumar, Y. H. Sharath
    Kumar, N. Vinay
    Guru, D. S.
    INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING TECHNOLOGIES AND APPLICATIONS (ICACTA), 2015, 45 : 226 - 235
  • [24] Characterizing the Delaunay decompositions of compact hyperbolic surfaces
    Leibon, Gregory
    GEOMETRY & TOPOLOGY, 2002, 6 : 361 - 391
  • [25] Nematic films and radially anisotropic Delaunay surfaces
    Chen, B. G.
    Kamien, R. D.
    EUROPEAN PHYSICAL JOURNAL E, 2009, 28 (03): : 315 - 329
  • [26] A delaunay approach to interactive cutting in triangulated surfaces
    Nienhuys, HW
    van der Stappen, AF
    ALGORITHMIC FOUNDATIONS OF ROBOTICS V, 2003, 7 : 113 - 129
  • [27] Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces
    Dominique Attali
    Jean-Daniel Boissonnat
    Discrete & Computational Geometry, 2003, 30 : 437 - 452
  • [28] Nematic films and radially anisotropic Delaunay surfaces
    B. G. Chen
    R. D. Kamien
    The European Physical Journal E, 2009, 28 : 315 - 329
  • [29] Delaunay ends of constant mean curvature surfaces
    Kilian, M.
    Rossman, W.
    Schmitt, N.
    COMPOSITIO MATHEMATICA, 2008, 144 (01) : 186 - 220
  • [30] Constant mean curvature surfaces with Delaunay ends
    Mazzeo, R
    Pacard, F
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2001, 9 (01) : 169 - 237