ON ERGODIC AVERAGES FOR PARABOLIC PRODUCT FLOWS

被引:6
|
作者
Bufetov, Alexander I. [1 ,2 ,3 ,4 ,5 ]
Solomyak, Boris [6 ]
机构
[1] Aix Marseille Univ, Cent Marseille, CNRS, UMR 7373,I2M, 39 Rue F Joliot Curie, Marseille, France
[2] RAS, Steklov Math Inst, Moscow, Russia
[3] Inst Informat Transmiss Problems, Moscow, Russia
[4] Natl Res Univ Higher Sch Econ, Moscow, Russia
[5] St Petersburg State Univ, Chebyshev Lab, St Petersburg, Russia
[6] Bar Ilan Univ, Dept Math, Ramat Gan, Israel
来源
基金
以色列科学基金会; 欧洲研究理事会;
关键词
Substitution dynamical system; spectral measure; Holder continuity; SUBSTITUTION DYNAMICAL-SYSTEMS; MODULUS;
D O I
10.24033/bsmf2770
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a direct product of a suspension flow over a substitution dynamical system and an arbitrary ergodic flow and give quantitative estimates for the speed of convergence for ergodic integrals of such systems. Our argument relies on new uniform estimates of the spectral measure for suspension flows over substitution dynamical systems. The paper answers a question by Jon Chaika.
引用
收藏
页码:675 / 690
页数:16
相关论文
共 50 条
  • [41] Level sets of multiple ergodic averages
    Fan, Ai-Hua
    Liao, Lingmin
    Ma, Ji-Hua
    MONATSHEFTE FUR MATHEMATIK, 2012, 168 (01): : 17 - 26
  • [42] Nilsystems and ergodic averages along primes
    Eisner, Tanja
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (10) : 2769 - 2777
  • [43] On Variation Functions for Subsequence Ergodic Averages
    R. Nair
    M. Weber
    Monatshefte für Mathematik, 1999, 128 : 131 - 150
  • [44] ON MEAN ERGODIC THEOREM FOR WEIGHTED AVERAGES
    HANSON, DL
    PLEDGER, G
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 13 (02): : 141 - &
  • [45] Convergence of the lacunary ergodic Cesaro averages
    Bernardis, Ana
    Iaffei, Bibiana
    Martin-Reyes, Francisco J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 226 - 246
  • [46] Exponent of Convergence of a Sequence of Ergodic Averages
    Podvigin, I., V
    MATHEMATICAL NOTES, 2022, 112 (1-2) : 271 - 280
  • [47] Learning Ergodic Averages in Chaotic Systems
    Huhn, Francisco
    Magri, Luca
    COMPUTATIONAL SCIENCE - ICCS 2020, PT VI, 2020, 12142 : 124 - 132
  • [48] ALMOST EVERYWHERE CONVERGENCE OF ERGODIC AVERAGES
    Buczolich, Zoltan
    REAL ANALYSIS EXCHANGE, 2008, 34 (01) : 1 - 15
  • [49] Entropy numbers of some ergodic averages
    Gamet, C
    Weber, M
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1999, 44 (04) : 650 - 668
  • [50] Ergodic transforms associated to general averages
    Aimar, H.
    Bernardis, A. L.
    Martin-Reyes, F. J.
    STUDIA MATHEMATICA, 2010, 199 (02) : 107 - 143