ON ERGODIC AVERAGES FOR PARABOLIC PRODUCT FLOWS

被引:6
|
作者
Bufetov, Alexander I. [1 ,2 ,3 ,4 ,5 ]
Solomyak, Boris [6 ]
机构
[1] Aix Marseille Univ, Cent Marseille, CNRS, UMR 7373,I2M, 39 Rue F Joliot Curie, Marseille, France
[2] RAS, Steklov Math Inst, Moscow, Russia
[3] Inst Informat Transmiss Problems, Moscow, Russia
[4] Natl Res Univ Higher Sch Econ, Moscow, Russia
[5] St Petersburg State Univ, Chebyshev Lab, St Petersburg, Russia
[6] Bar Ilan Univ, Dept Math, Ramat Gan, Israel
来源
基金
以色列科学基金会; 欧洲研究理事会;
关键词
Substitution dynamical system; spectral measure; Holder continuity; SUBSTITUTION DYNAMICAL-SYSTEMS; MODULUS;
D O I
10.24033/bsmf2770
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a direct product of a suspension flow over a substitution dynamical system and an arbitrary ergodic flow and give quantitative estimates for the speed of convergence for ergodic integrals of such systems. Our argument relies on new uniform estimates of the spectral measure for suspension flows over substitution dynamical systems. The paper answers a question by Jon Chaika.
引用
收藏
页码:675 / 690
页数:16
相关论文
共 50 条