Semi-Supervised Cross-Modal Retrieval Based on Discriminative Comapping

被引:0
|
作者
Liu, Li [1 ]
Dong, Xiao [1 ]
Wang, Tianshi [1 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
REPRESENTATION;
D O I
10.1155/2020/1462429
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Most cross-modal retrieval methods based on subspace learning just focus on learning the projection matrices that map different modalities to a common subspace and pay less attention to the retrieval task specificity and class information. To address the two limitations and make full use of unlabelled data, we propose a novel semi-supervised method for cross-modal retrieval named modal-related retrieval based on discriminative comapping (MRRDC). The projection matrices are obtained to map multimodal data into a common subspace for different tasks. In the process of projection matrix learning, a linear discriminant constraint is introduced to preserve the original class information in different modal spaces. An iterative optimization algorithm based on label propagation is presented to solve the proposed joint learning formulations. The experimental results on several datasets demonstrate the superiority of our method compared with state-of-the-art subspace methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Intra-class low-rank regularization for supervised and semi-supervised cross-modal retrieval
    Peipei Kang
    Zehang Lin
    Zhenguo Yang
    Xiaozhao Fang
    Alexander M. Bronstein
    Qing Li
    Wenyin Liu
    Applied Intelligence, 2022, 52 : 33 - 54
  • [32] Semi-Relaxation Supervised Hashing for Cross-Modal Retrieval
    Zhang, Peng-Fei
    Li, Chuan-Xiang
    Liu, Meng-Yuan
    Nie, Liqiang
    Xu, Xin-Shun
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1762 - 1770
  • [33] SEMI-SUPERVISED GRAPH CONVOLUTIONAL HASHING NETWORK FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
    Shen, Zhanjian
    Zhai, Deming
    Liu, Xianming
    Jiang, Junjun
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2366 - 2370
  • [34] Semi-supervised Cross-Modal Hashing with Graph Convolutional Networks
    Duan, Jiasheng
    Luo, Yadan
    Wang, Ziwei
    Huang, Zi
    DATABASES THEORY AND APPLICATIONS, ADC 2020, 2020, 12008 : 93 - 104
  • [35] Semi-supervised Cross-Modal Hashing Based on Label Prediction and Distance Preserving
    Zhang, Xu
    Tian, Xin
    Yang, Bing
    Zhang, Zuyu
    Li, Yan
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 324 - 330
  • [36] Deep Supervised Cross-modal Retrieval
    Zhen, Liangli
    Hu, Peng
    Wang, Xu
    Peng, Dezhong
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10386 - 10395
  • [37] Hope: A Hierarchical Perspective for Semi-supervised 2D-3D Cross-Modal Retrieval
    Zhang F.
    Zhou H.
    Hua X.
    Chen C.
    Luo X.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (12) : 1 - 18
  • [38] Semi-supervised cross-modal hashing via modality-specific and cross-modal graph convolutional networks
    Wu, Fei
    Li, Shuaishuai
    Gao, Guangwei
    Ji, Yimu
    Jing, Xiao-Yuan
    Wan, Zhiguo
    PATTERN RECOGNITION, 2023, 136
  • [39] Semi-supervised cross-modal image generation with generative adversarial networks
    Li, Dan
    Du, Changde
    He, Huiguang
    PATTERN RECOGNITION, 2020, 100
  • [40] Efficient Discriminative Hashing for Cross-Modal Retrieval
    Huang, Junfan
    Kang, Peipei
    Fang, Xiaozhao
    Han, Na
    Xie, Shengli
    Gao, Hongbo
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (06): : 3865 - 3878